Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Lập bảng các kí hiệu trong toán học

Ghi nghĩa của kí hiệu

Đ𝒂𝒏 𝑫𝒊ệ𝒑
1 tháng 8 2019 lúc 16:03

https://dominhhai.github.io/vi/2017/10/math-notation/

Bạn tham khảo link này nhé

#chanh

ღHồ ღHoàng ღYến ღTrang
1 tháng 8 2019 lúc 16:05
Kí hiệuÝ nghĩa
\mathbb{A}ATập \mathbb{A}A bất kì
\mathbb{N}NTập số tự nhiên
\mathbb{Z}ZTập số nguyên
\mathbb{Q}QTập số hữu tỉ
\mathbb{I}ITập số vô tỉ
\mathbb{R}RTập số thực
\{x,y,z\}{x,y,z}Tập chứa các phần tử x,y,zx,y,z
\{a_1,a_2,…,a_n\}{a1​,a2​,…,an​}Tập chứa các số nguyên từ a_1a1​ tới a_nan
[a,b][a,b]Tập chứa các số thực trong khoảng a<ba<b, bao gồm cả aa và bb
(a,b)(a,b)Tập chứa các số thực trong khoảng a<ba<bkhông bao gồm cả aa và bb
[a,b)[a,b)Tập chứa các số thực trong khoảng a<ba<b, gồm aa nhưng không gồm bb
(a,b](a,b]Tập chứa các số thực trong khoảng a<ba<b, gồm bb nhưng không gồm aa
x^{(i)}x(i)Đầu vào thứ ii trong tập huấn luyện
y^{(i)}y(i)Đầu ra thứ ii trong tập huấn luyện ứng với đầu vào x^{(i)}x(i)

Số và ma trận

Kí hiệuÝ nghĩa
aaSố thực aa
\mathbf{a}aVéc-to cột \mathbf{a}a
\mathbf{A}AMa trận \mathbf{A}A
[a_i]_n[ai​]n​ hoặc (a_1,….,a_m)(a1​,….,am​)Véc-to hàng \mathbf{a}a cấp nn
[a_i]_n^{\intercal}[ai​]n⊺​ hoặc (a_1,….,a_m)^{\intercal}(a1​,….,am​)⊺Véc-to cột \mathbf{a}a cấp nn
\mathbf{a}\in\mathbb{R^n}a∈RnVéc-to cột số thực \mathbf{a}a cấp nn
[A_{ij}]_{mn}[Aij​]mnMa trận \mathbf{A}A cấp m \times nm×n
\mathbf{A}\in\mathbb{R^{m \times n}}A∈Rm×nMa trận số thực \mathbf{A}A cấp m \times nm×n
\mathbf{I}_nInMa trận đơn vị cấp nn
\mathbf{A}^{\dagger}AGiả nghịch đảo của ma trận AA (Moore-Penrose pseudoinverse)
\mathbf{A}\odot\mathbf{B}ABPhép nhân phần tử Hadamard của ma trận \mathbf{A}A với ma trận \mathbf{B}B (element-wise (Hadamard))
\mathbf{a}\otimes\mathbf{b}abPhép nhân ngoài của véc-to \mathbf{a}a với véc-to \mathbf{b}b (outer product): \mathbf{a}\mathbf{b}^{\intercal}ab
\Vert\mathbf{a}\Vert_p∥apNorm cấp pp của véc-to \mathbf{a}a: \Vert\mathbf{a}\Vert=\bigg(\sum_i\vert x_i\vert^p\bigg)^\frac{1}{p}∥a∥=(∑i​∣xi​∣p)p1​
\Vert\mathbf{a}\Vert∥aNorm cấp 2 của véc-to \mathbf{a}a (độ dài véc-to)
a_iaiPhần tử thứ ii của véc-to \mathbf{a}a
A_{i,j}Ai,jPhần tử hàng ii, cột jj của ma trận \mathbf{A}A
A_{i_1:i_2,j_1:j_2}Ai1​:i2​,j1​:j2​​Ma trận con từ hàng i_1i1​ tới i_2i2​ và cột j_1j1​ tới j_2j2​ của ma trận \mathbf{A}A
A_{i,:}Ai,:​ hoặc \mathbf{A}^{(i)}A(i)Hàng ii của ma trận \mathbf{A}A
A_{:,j}A:,jCột jj của ma trận \mathbf{A}A

Giải tích

Kí hiệuÝ nghĩa
f:\mathbb{A}\mapsto\mathbb{B}f:A↦BHàm số ff với tập xác định AA và tập giá trị BB
f(x)f(x)Hàm số 1 biến ff theo biến xx
f(x,y)f(x,y)Hàm số 2 biến ff theo biến xx và yy
f(\mathbf{x})f(x)Hàm số ff theo véc-to \mathbf{x}x
f(\mathbf{x};\theta)f(x;θ)Hàm số ff theo véc-to \mathbf{x}x có tham số véc-to \thetaθ
f(x)^{\prime}f(x)′ hoặc \dfrac{df}{dx}dxdfĐạo hàm của hàm ff theo xx
\dfrac{\partial{f}}{\partial{x}}∂xfĐạo hàm riêng của hàm ff theo xx
\nabla_\mathbf{x}f∇xfGradient của hàm ff theo véc-to \mathbf{x}x
\int_a^bf(x)dx∫abf(x)dxTích phân tính theo xx trong khoảng [a,b][a,b]
\int_\mathbb{A}f(x)dx∫A​f(x)dxTích phân toàn miền \mathbb{A}A của xx
\int f(x)dx∫f(x)dxTích phân toàn miền giá trị của xx
\log{x}logx hoặc \ln{x}lnxLogarit tự nhiên: \log{x}\triangleq\ln{x}\triangleq\log_e{x}logx≜lnx≜logex
\sigma(x)σ(x)Hàm sigmoid (logis sigmoid): \dfrac{1}{1+e^{-x}}=\dfrac{1}{2}\Bigg(\tanh\bigg({\dfrac{x}{2}}\bigg)+1\Bigg)1+ex1​=21​(tanh(2x​)+1)

Xác suất thống kê

Kí hiệuÝ nghĩa
\hat{y}y^​Đầu ra dự đoán
\hat{p}p^​Xác suất dự đoán
\hat{\theta}θ^Tham số ước lượng
J(\theta)J(θ)Hàm chi phí (cost function) hay hàm lỗi (lost function) ứng với tham số \thetaθ
I.I.DMẫu ngẫu nhiên (Independent and Idenal Distribution)
LL(\theta)LL(θ)Log lihood của tham số \thetaθ
MLEƯớc lượng hợp lý cực đại (Maximum lihood Estimation)
MAPCực đại xác suất hậu nghiệm (Maximum A Posteriori)

Danh sách ký hiệu toán học – Wikipedia tiếng Việt

Tập các kí hiệu toán học

Các ký hiệu toán học thông dụng rất hay - TaiLieu.VN

nguyễn tuấn thảo
1 tháng 8 2019 lúc 16:06

Tập hợp

Kí hiệuÝ nghĩa
\mathbb{A}ATập \mathbb{A}A bất kì
\mathbb{N}NTập số tự nhiên
\mathbb{Z}ZTập số nguyên
\mathbb{Q}QTập số hữu tỉ
\mathbb{I}ITập số vô tỉ
\mathbb{R}RTập số thực
\{x,y,z\}{x,y,z}Tập chứa các phần tử x,y,zx,y,z
\{a_1,a_2,…,a_n\}{a1​,a2​,…,an​}Tập chứa các số nguyên từ a_1a1​ tới a_nan
[a,b][a,b]Tập chứa các số thực trong khoảng a<ba<b, bao gồm cả aa và bb
(a,b)(a,b)Tập chứa các số thực trong khoảng a<ba<b, không bao gồm cả aa và bb
[a,b)[a,b)Tập chứa các số thực trong khoảng a<ba<b, gồm aa nhưng không gồm bb
(a,b](a,b]Tập chứa các số thực trong khoảng a<ba<b, gồm bb nhưng không gồm aa
x^{(i)}x(i)Đầu vào thứ ii trong tập huấn luyện
y^{(i)}y(i)Đầu ra thứ ii trong tập huấn luyện ứng với đầu vào x^{(i)}x(i)

Số và ma trận

Kí hiệuÝ nghĩa
aaSố thực aa
\mathbf{a}aVéc-to cột \mathbf{a}a
\mathbf{A}AMa trận \mathbf{A}A
[a_i]_n[ai​]n​ hoặc (a_1,….,a_m)(a1​,….,am​)Véc-to hàng \mathbf{a}a cấp nn
[a_i]_n^{\intercal}[ai​]n⊺​ hoặc (a_1,….,a_m)^{\intercal}(a1​,….,am​)⊺Véc-to cột \mathbf{a}a cấp nn
\mathbf{a}\in\mathbb{R^n}a∈RnVéc-to cột số thực \mathbf{a}a cấp nn
[A_{ij}]_{mn}[Aij​]mnMa trận \mathbf{A}A cấp m \times nm×n
\mathbf{A}\in\mathbb{R^{m \times n}}A∈Rm×nMa trận số thực \mathbf{A}A cấp m \times nm×n
\mathbf{I}_nInMa trận đơn vị cấp nn
\mathbf{A}^{\dagger}A†Giả nghịch đảo của ma trận AA (Moore-Penrose pseudoinverse)
\mathbf{A}\odot\mathbf{B}A⊙BPhép nhân phần tử Hadamard của ma trận \mathbf{A}A với ma trận \mathbf{B}B (element-wise (Hadamard))
\mathbf{a}\otimes\mathbf{b}a⊗bPhép nhân ngoài của véc-to \mathbf{a}a với véc-to \mathbf{b}b (outer product): \mathbf{a}\mathbf{b}^{\intercal}ab⊺
\Vert\mathbf{a}\Vert_p∥a∥pNorm cấp pp của véc-to \mathbf{a}a: \Vert\mathbf{a}\Vert=\bigg(\sum_i\vert x_i\vert^p\bigg)^\frac{1}{p}∥a∥=(∑i​∣xi​∣p)p1​
\Vert\mathbf{a}\Vert∥a∥Norm cấp 2 của véc-to \mathbf{a}a (độ dài véc-to)
a_iaiPhần tử thứ ii của véc-to \mathbf{a}a
A_{i,j}Ai,jPhần tử hàng ii, cột jj của ma trận \mathbf{A}A
A_{i_1:i_2,j_1:j_2}Ai1​:i2​,j1​:j2​​Ma trận con từ hàng i_1i1​ tới i_2i2​ và cột j_1j1​ tới j_2j2​ của ma trận \mathbf{A}A
A_{i,:}Ai,:​ hoặc \mathbf{A}^{(i)}A(i)Hàng ii của ma trận \mathbf{A}A
A_{:,j}A:,jCột jj của ma trận \mathbf{A}A

Giải tích

Kí hiệuÝ nghĩa
f:\mathbb{A}\mapsto\mathbb{B}f:A↦BHàm số ff với tập xác định AA và tập giá trị BB
f(x)f(x)Hàm số 1 biến ff theo biến xx
f(x,y)f(x,y)Hàm số 2 biến ff theo biến xx và yy
f(\mathbf{x})f(x)Hàm số ff theo véc-to \mathbf{x}x
f(\mathbf{x};\theta)f(x;θ)Hàm số ff theo véc-to \mathbf{x}x có tham số véc-to \thetaθ
f(x)^{\prime}f(x)′ hoặc \dfrac{df}{dx}dxdfĐạo hàm của hàm ff theo xx
\dfrac{\partial{f}}{\partial{x}}∂xfĐạo hàm riêng của hàm ff theo xx
\nabla_\mathbf{x}f∇x​fGradient của hàm ff theo véc-to \mathbf{x}x
\int_a^bf(x)dx∫abf(x)dxTích phân tính theo xx trong khoảng [a,b][a,b]
\int_\mathbb{A}f(x)dx∫A​f(x)dxTích phân toàn miền \mathbb{A}A của xx
\int f(x)dx∫f(x)dxTích phân toàn miền giá trị của xx
\log{x}logx hoặc \ln{x}lnxLogarit tự nhiên: \log{x}\triangleq\ln{x}\triangleq\log_e{x}logx≜lnx≜logex
\sigma(x)σ(x)Hàm sigmoid (logis sigmoid): \dfrac{1}{1+e^{-x}}=\dfrac{1}{2}\Bigg(\tanh\bigg({\dfrac{x}{2}}\bigg)+1\Bigg)1+ex1​=21​(tanh(2x​)+1)

Xác suất thống kê

Kí hiệuÝ nghĩa
\hat{y}y^​Đầu ra dự đoán
\hat{p}p^​Xác suất dự đoán
\hat{\theta}θ^Tham số ước lượng
J(\theta)J(θ)Hàm chi phí (cost function) hay hàm lỗi (lost function) ứng với tham số \thetaθ
I.I.DMẫu ngẫu nhiên (Independent and Idenal Distribution)
LL(\theta)LL(θ)Log lihood của tham số \thetaθ
MLEƯớc lượng hợp lý cực đại (Maximum lihood Estimation)
MAPCực đại xác suất hậu nghiệm (Maximum A Posteriori)
Đ𝒂𝒏 𝑫𝒊ệ𝒑
1 tháng 8 2019 lúc 16:07

Tập hợp

Kí hiệuÝ nghĩa
\mathbb{A}ATập \mathbb{A}A bất kì
\mathbb{N}NTập số tự nhiên
\mathbb{Z}ZTập số nguyên
\mathbb{Q}QTập số hữu tỉ
\mathbb{I}ITập số vô tỉ
\mathbb{R}RTập số thực
\{x,y,z\}{x,y,z}Tập chứa các phần tử x,y,zx,y,z
\{a_1,a_2,…,a_n\}{a1​,a2​,…,an​}Tập chứa các số nguyên từ a_1a1​ tới a_nan
[a,b][a,b]Tập chứa các số thực trong khoảng a<ba<b, bao gồm cả aa và bb
(a,b)(a,b)Tập chứa các số thực trong khoảng a<ba<bkhông bao gồm cả aa và bb
[a,b)[a,b)Tập chứa các số thực trong khoảng a<ba<b, gồm aa nhưng không gồm bb
(a,b](a,b]Tập chứa các số thực trong khoảng a<ba<b, gồm bb nhưng không gồm aa
x^{(i)}x(i)Đầu vào thứ ii trong tập huấn luyện
y^{(i)}y(i)Đầu ra thứ ii trong tập huấn luyện ứng với đầu vào x^{(i)}x(i)

Số và ma trận

Kí hiệuÝ nghĩa
aaSố thực aa
\mathbf{a}aVéc-to cột \mathbf{a}a
\mathbf{A}AMa trận \mathbf{A}A
[a_i]_n[ai​]n​ hoặc (a_1,….,a_m)(a1​,….,am​)Véc-to hàng \mathbf{a}a cấp nn
[a_i]_n^{\intercal}[ai​]n⊺​ hoặc (a_1,….,a_m)^{\intercal}(a1​,….,am​)⊺Véc-to cột \mathbf{a}a cấp nn
\mathbf{a}\in\mathbb{R^n}a∈RnVéc-to cột số thực \mathbf{a}a cấp nn
[A_{ij}]_{mn}[Aij​]mnMa trận \mathbf{A}A cấp m \times nm×n
\mathbf{A}\in\mathbb{R^{m \times n}}A∈Rm×nMa trận số thực \mathbf{A}A cấp m \times nm×n
\mathbf{I}_nInMa trận đơn vị cấp nn
\mathbf{A}^{\dagger}AGiả nghịch đảo của ma trận AA (Moore-Penrose pseudoinverse)
\mathbf{A}\odot\mathbf{B}ABPhép nhân phần tử Hadamard của ma trận \mathbf{A}A với ma trận \mathbf{B}B (element-wise (Hadamard))
\mathbf{a}\otimes\mathbf{b}abPhép nhân ngoài của véc-to \mathbf{a}a với véc-to \mathbf{b}b (outer product): \mathbf{a}\mathbf{b}^{\intercal}ab
\Vert\mathbf{a}\Vert_p∥apNorm cấp pp của véc-to \mathbf{a}a: \Vert\mathbf{a}\Vert=\bigg(\sum_i\vert x_i\vert^p\bigg)^\frac{1}{p}∥a∥=(∑i​∣xi​∣p)p1​
\Vert\mathbf{a}\Vert∥aNorm cấp 2 của véc-to \mathbf{a}a (độ dài véc-to)
a_iaiPhần tử thứ ii của véc-to \mathbf{a}a
A_{i,j}Ai,jPhần tử hàng ii, cột jj của ma trận \mathbf{A}A
A_{i_1:i_2,j_1:j_2}Ai1​:i2​,j1​:j2​​Ma trận con từ hàng i_1i1​ tới i_2i2​ và cột j_1j1​ tới j_2j2​ của ma trận \mathbf{A}A
A_{i,:}Ai,:​ hoặc \mathbf{A}^{(i)}A(i)Hàng ii của ma trận \mathbf{A}A
A_{:,j}A:,jCột jj của ma trận \mathbf{A}A

Giải tích

Kí hiệuÝ nghĩa
f:\mathbb{A}\mapsto\mathbb{B}f:A↦BHàm số ff với tập xác định AA và tập giá trị BB
f(x)f(x)Hàm số 1 biến ff theo biến xx
f(x,y)f(x,y)Hàm số 2 biến ff theo biến xx và yy
f(\mathbf{x})f(x)Hàm số ff theo véc-to \mathbf{x}x
f(\mathbf{x};\theta)f(x;θ)Hàm số ff theo véc-to \mathbf{x}x có tham số véc-to \thetaθ
f(x)^{\prime}f(x)′ hoặc \dfrac{df}{dx}dxdfĐạo hàm của hàm ff theo xx
\dfrac{\partial{f}}{\partial{x}}∂xfĐạo hàm riêng của hàm ff theo xx
\nabla_\mathbf{x}f∇xfGradient của hàm ff theo véc-to \mathbf{x}x
\int_a^bf(x)dx∫abf(x)dxTích phân tính theo xx trong khoảng [a,b][a,b]
\int_\mathbb{A}f(x)dx∫A​f(x)dxTích phân toàn miền \mathbb{A}A của xx
\int f(x)dx∫f(x)dxTích phân toàn miền giá trị của xx
\log{x}logx hoặc \ln{x}lnxLogarit tự nhiên: \log{x}\triangleq\ln{x}\triangleq\log_e{x}logx≜lnx≜logex
\sigma(x)σ(x)Hàm sigmoid (logis sigmoid): \dfrac{1}{1+e^{-x}}=\dfrac{1}{2}\Bigg(\tanh\bigg({\dfrac{x}{2}}\bigg)+1\Bigg)1+ex1​=21​(tanh(2x​)+1)

Xác suất thống kê

Kí hiệuÝ nghĩa
\hat{y}y^​Đầu ra dự đoán
\hat{p}p^​Xác suất dự đoán
\hat{\theta}θ^Tham số ước lượng
J(\theta)J(θ)Hàm chi phí (cost function) hay hàm lỗi (lost function) ứng với tham số \thetaθ
I.I.DMẫu ngẫu nhiên (Independent and Idenal Distribution)
LL(\theta)LL(θ)Log lihood của tham số \thetaθ
MLEƯớc lượng hợp lý cực đại (Maximum lihood Estimation)
MAP

Cực đại xác suất hậu nghiệm (Maximum A Posteriori)

#chanh


Các câu hỏi tương tự
DORAPAN
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pudding Bánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết