1: Khi x=25 thì \(B=\frac{1}{5+2}=\frac17\)
2: \(A=\frac{x+2}{x+\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{x+2-2\sqrt{x}\cdot\left(\sqrt{x}+2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2-2x-4\sqrt{x}+x-1}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)}=\frac{-4\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
M=A:B
\(=\frac{-4\sqrt{x}+1}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}+2}=\frac{-4\sqrt{x}+1}{\sqrt{x}-1}\)
3: \(M^2-M=2\)
=>\(M^2-M-2=0\)
=>(M-2)(M+1)=0
=>\(\left[\begin{array}{l}M=2\\ M=-1\end{array}\right.\)
Khi M=2 thì \(\frac{-4\sqrt{x}+1}{\sqrt{x}-1}=2\)
=>\(-4\sqrt{x}+1=2\cdot\left(\sqrt{x}-1\right)=2\sqrt{x}-2\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\frac12\)
=>x=1/4(nhận)
Khi M=-1 thì \(\frac{-4\sqrt{x}+1}{\sqrt{x}-1}=-1\)
=>\(-4\sqrt{x}+1=-\sqrt{x}+1\)
=>\(-3\cdot\sqrt{x}=0\)
=>x=0(nhận)