Đặt \(\frac{\pi}{8}=x\)
\(B=cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}\)
\(=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}2sinxcosx}=\frac{2cos2x}{sin2x}=2cot2x\)
\(=2cot\left(\frac{2\pi}{8}\right)=2cot\frac{\pi}{4}=2\)
Đặt \(\frac{\pi}{8}=x\)
\(B=cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}\)
\(=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}2sinxcosx}=\frac{2cos2x}{sin2x}=2cot2x\)
\(=2cot\left(\frac{2\pi}{8}\right)=2cot\frac{\pi}{4}=2\)
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
Rút gọn biểu thức sau:\(A=\left[tan\frac{17\pi}{4}+tan\left(\frac{7\pi}{2}-x\right)\right]^2+\left[cot\frac{17\pi}{4}+cot\left(7\pi\right)-x\right]^2\)
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
\(\cos\left(5\Pi+x\right)+\sin\left(\frac{9\Pi}{2}-x\right)-\tan\left(\frac{3\Pi}{2}+x\right)\cot\left(\frac{3\Pi}{2}-x\right)\)
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)
Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)
Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180
b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{}\alpha< \frac{3\pi}{2}\right)\)
Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)
b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)
Bài 5) Chứng minh các hệ thức sau:
a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)
b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)
c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)
d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)
Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)
Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)
Bài 8) Chứng minh các biểu thức sau:
a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)
b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)
c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)
Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:
a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)
Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:
a) \(tanA+tanB+tanC=tanAtanBtanC\)
b) \(cotAcotB+cotBcotC+cotCcotA=1\)
Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:
a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)
b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)
Chứng minh đẳng thức sau :
1) \(sin^2\left(\frac{\pi}{8}+x\right)-sin^2\left(\frac{\pi}{8}-x\right)=\frac{\sqrt{2}}{2}sin2x\)
2) \(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=tanx\)
chứng minh rằng
a) \(cos^4a+sin^4a-6sin^2a.cos^2a=cos4a\)
b) \(tan\frac{3\pi}{5}-tan\frac{2\pi}{5}-tan\frac{\pi}{5}=tan\frac{\pi}{5}.tan\frac{2\pi}{5}.tan\frac{3\pi}{5}\)