Xét cấp số cộng (un) với un+1 = un+ d, ta có: un+1 – un = d
+ un+1 > un nếu d > 0
+ un+1 < un nếu d < 0
Vậy cấp số cộng (un)
+ Tăng nếu d > 0
+ Giảm nếu d < 0
Xét cấp số cộng (un) với un+1 = un+ d, ta có: un+1 – un = d
+ un+1 > un nếu d > 0
+ un+1 < un nếu d < 0
Vậy cấp số cộng (un)
+ Tăng nếu d > 0
+ Giảm nếu d < 0
Xét tính tăng, giảm của dãy số (un) có số hạng tổng quát un = 2n - 3n
cho ba số nguyên theo thứ tự lập thành một cấp số nhân. Nếu tăng số hạng thứ hai thêm 9 đơn vị thì chúng lập thành cấp số cộng. Nếu tăng số hạng thứ hai thêm 2 đơn vị và số hạng thứ ba thêm 18 đơn vị thì chúng lập thành cấp số nhân. Tổng của ba số đó bằng
Cho dãy số \(\left(u_n\right)\) :
\(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=2u_n-u_{n-1};\left(n\ge2\right)\end{matrix}\right.\)
a) Viết năm số hạng đầu của dãy số
b) Lập dãy số \(\left(v_n\right)\) với \(v_n=u_{n+1}-u_n\)
Chứng minh dãy số \(\left(v_n\right)\) là cấp số cộng
c) Tìm công thức tính \(u_n\) theo \(n\)
Bài 1: Xét tính tăng giảm của các dãy số (Un) với
a)\(Un=\dfrac{2^n-1}{2^n+1}\) b)\(Un=\left(-1\right)^n.n\)
Bài 2: Xét tính bị chặn của
\(Un=\sqrt[3]{n}-\sqrt[3]{n+1}\)
Chứng minh rằng: x,y,z là cấp số nhân khi \(\dfrac{2}{y-x}\), \(\dfrac{1}{y}\), \(\dfrac{2}{y-z}\) là cấp số cộng.
Cho dãy số \(\left(u_n\right)\) :
\(\left\{{}\begin{matrix}u_1=\dfrac{1}{3}\\u_{n+1}=\dfrac{\left(n+1\right)u_n}{3n};n\ge1\end{matrix}\right.\)
a) Viết 5 số hạng đầu của dãy số
b) Lập dãy số \(\left(v_n\right)\) với \(v_n=\dfrac{u_n}{n}\)
Chứng minh dãy số \(\left(v_n\right)\) là cấp số nhân
c) Tìm công thức tính \(u_n\) theo \(n\)
Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ 3 bằng nhau. Tìm các cấp số ấy ?
Chứng minh rằng nếu 3 số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau ?
Ba số có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, hoặc là các số hạng thứ hai, thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng để tổng của chúng là 820 ?