Số a được gọi là nghiệm của đa thức P(x) khi và chỉ khi P(a) = 0
Số a được gọi là nghiệm của đa thức P(x) khi và chỉ khi P(a) = 0
Cho đa thức \(P\left(x\right)=x^2+mx-9\)(m là tham số).
a/ Tìm giá trị của m để \(x=1\) là một nghiệm của đa thức \(P\left(x\right)\).
b/ Khi \(m=0\), tìm tất cả các nghiệm của đa thức \(P\left(x\right)\).
c/ Khi \(m=0\), tìm giá trị nhỏ nhất của đa thức \(P\left(x\right)\).
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.
Cho hai đa thức :
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến
b) Tính \(P\left(x\right)+Q\left(x\right)\) và \(P\left(x\right)-Q\left(x\right)\)
c) Chứng tỏ rằng \(x=0\) là nghiệm của đa thức \(P\left(x\right)\) nhưng không phải là nghiệm của đa thức \(Q\left(x\right)\)
Bài 1: Cho đa thức: \(f\left(x\right)=x^2+4x-5\)
1. Số -5 có phải là nghiệm của \(f\left(x\right)\) không?
Bài 2: Thu gọn rồi tìm nghiệm của các đa thức sau:
1. \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
2. \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
3. \(h\left(x\right)=x\left(x-1\right)+1\)
Câu 1: Xác định hệ số a, b của đa thức \(f\left(x\right)=ax+b\) biết \(f\left(1\right)=1\) và \(f\left(-1\right)=-5\).
Câu 2: Cho hai đa thức: \(A\left(x\right)=x^5+2x^2-\dfrac{1}{2}x-3\)
\(B\left(x\right)=-x^5-3x^2+\dfrac{1}{2}x+1\)
CMR \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)vô nghiệm.
Cho đa thức :
\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
a) Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến
b) Tính \(M\left(1\right)\) và \(M\left(-1\right)\)
c) Chứng tỏ rằng đa thức trên không có nghiệm
Bài 1: Cho đa thức: \(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)
1. Tìm nghiệm của \(f\left(x\right);\)\(g\left(x\right)\).
2. Tìm nghiệm của đa thức \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
3. Từ kết quả câu b suy ra với giá trị nào của \(x\) thì \(f\left(x\right)=g\left(x\right)\)?
tìm nghiệm của đa thức sau
\(x^2\left(x-3\right)-\left(x^2+5\right)+2x+5\)
Xét đa thức P(x) = ax2 + bx + c. Chứng minh rằng:
a, Nếu a + b + c = 0 thì x = 1 là nghiệm của P(x)
b, Nếu a - b + c thì x = -1 là nghiệm của P(x)
Áp dụng hãy tìm nghiệm của các đa thức sau:
A(x) = \(\left(\sqrt{5}-1\right)x^2-\sqrt{5}x+1\)
B(x) = \(\left(1+\sqrt{3}\right)x^2+x-\sqrt{3}\)