Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
Bài 1 : Cho hình chữ nhật ABCD có AB = 8cm , BC = 6cm . Qua D kẻ đường thẳng m vuông góc DB , đường thẳng m cắt tia BC tại E . Kẻ CH vuông góc DE tại H
a, Chứng minh △BDE đồng dạng △DCE
b, Chứng minh DC2 = CH . DB
c, Gọi giao điểm hai đường chéo của hình chữ nhật ABCD là O . Hai đường OE và HC cắt nhau tại I . Chứng minh I là trung điểm HC và S△BCH / S△EBD .
d, Chứng minh 3 đường thẳng OE , DC , BH đồng quy .
CÁC BẠN GIÚP MÌNH VỚI Ạ =((((((((((((((((((((
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
Cho tam giác ABC vuông tại A (AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. Gọi D là điểm đối xứng của I qua N.
a) Tứ giác ADCI là hình gì?
b) Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC=1/3
c) Cho AB=12cm, BC=20cm. tính diện tích hình ADCI.
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
Cho ∆ABC vuông tại A, AB>AC, M là 1 điểm tuỳ ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt AB tại I và cắt tia CA tại D. Chứng minh rằng:
a) ∆ABC đồng dạng với ∆MDC
b) BI.BA=BM.BC
c) CI cắt BD tại K. Chứng minh BI.BA + CI.CK không phụ thuộc vào vị trí của điểm M
d) \(\widehat{MAI}=\widehat{BDI}\), từ đó suy ra AB là tia phân giác của góc MAK.
Cho tam giác AEC vuông tại A. Từ điểm O trên cạnh BE kẻ đường vuông góc với BE, cắt tia đối của tia AB ở F, cắt AB ở D. Tia phân giác của góc E cắt AB, CD lần lượt ở M,P, tia phân giác của góc F cắt BC, DA lần lượt ở N và Q.
Chứng minh:
a) EM vuông góc với FN.
b) Tứ giác MPNQ là hình thoi