Cho hình thang ABCD có AB//CD, góc A = góc D = 90o, AB = 2cm, AD = CD = 8cm.
a, Tính BC
b, Gọi O là trung điểm của AD. Chứng minh góc BOC = 90 độ, Tính diện tích tam giác BOC
c, Chứng minh: tam giác AOB đồng dạng tam giác DCO
d, Chứng minh tam giác ABO đồng dạng tam giác OBC
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM. Kẻ MD vuông góc AB, ME vuông góc AC. a) Chứng minh AEMD là hình chữ nhật b) Gọi H là điểm đổi xứng với M qua D. CMR: AMBH là hình thoi c) Tính diện tích tam giác ABC biết AB=6cm, AM=5cm d) Tìm thêm điều kiện của tam giác ABC để AEMD là hình vuông
cho hình thang cân ABCD có AB//CD và AB<CD, đường chéo BD vuông góc với cạnh BC. vẽ đường cao AH
a) CM tam giác BDC đồng dạng với tam giác HBC
b) Cho BC=15cm, DC=25cm. tính HC,HD
c) tính S abcd
Cho hình bình hành ABCD có góc B nhọn. Từ A kẻ AM vuông góc với BC (M thuộc BC), kẻ AN vuông góc với CD (N thuộc CD). CMR:
a. Tam giác AND đồng dạng với tam giác AMB.
b. Tam giác MAN đồng dạng với tam giác ABC
Cho tam giác ABC vuông tại a (AB<AC), GỌI m là trung điểm BC qua m kẻ MD vuông góc AB tại D, ME vuông góc AC tại I
a. Chứng minh AM=DE
b.Gọi là điểm đối xứng của M qua E.Chứng minh tứ giác AMCG là hình thoi
c.Biết AB=6cm,BC=10cm. Tính tỉ số, tính tứ giác AEMD vad diện tích tam giác ABC
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho hình thang ABCD (AB song song DC), chân các đường vuông góc kẻ từ A, B xg DC nằm trên cạnh DC. C/m rg: AC2 + BD2 = AD2 + BC2 + 2AB.DC.