Cho hình thang ABCD có AB // CD và AB = AD = BC. Chứng minh rằng:
a, DB là tia phân giác của ADC
b, ABCD là hình thang cân
Bài 1 : Cho hình chữ nhật ABCD có AB = 8cm , BC = 6cm . Qua D kẻ đường thẳng m vuông góc DB , đường thẳng m cắt tia BC tại E . Kẻ CH vuông góc DE tại H
a, Chứng minh △BDE đồng dạng △DCE
b, Chứng minh DC2 = CH . DB
c, Gọi giao điểm hai đường chéo của hình chữ nhật ABCD là O . Hai đường OE và HC cắt nhau tại I . Chứng minh I là trung điểm HC và S△BCH / S△EBD .
d, Chứng minh 3 đường thẳng OE , DC , BH đồng quy .
CÁC BẠN GIÚP MÌNH VỚI Ạ =((((((((((((((((((((
cho hình thang cân ABCD có AB//CD và AB<CD, đường chéo BD vuông góc với cạnh BC. vẽ đường cao AH
a) CM tam giác BDC đồng dạng với tam giác HBC
b) Cho BC=15cm, DC=25cm. tính HC,HD
c) tính S abcd
cho hình thang cân abcd có ab//dc và ab<dc, đường chéo bd vuông góc với cạch bên bc. vẽ đường cao bh,ak
a, cm tam giác bdc đồng dạng tam giác hbc
b, cm bc^2=hc.dc
c,cm tam giác akd đồng dạng tam giác bhc
d, cho bc=15cm. dc=25cm. tính hc,hd
e, tính diện tích hình thang abcd
Cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH, AK
a, chứng minh ΔBDC đồng dạng với ΔHBC
b, chứng minh BC2 = HC.DC
c, chứng minh ΔAKD đồng dạng với ΔBHC
d, cho BC=15cm, DC=25cm. tính HC, HD
e, tính diện tích hình thang ABCD
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
Hình thang cân ABCD(AB//CD) có góc C=60 độ,DB là tia phân giác của góc D.Tính các cạnh của hình thang,biết chu vi hình thang bằng 30 cm.