Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

loading...  Hic b nào cíu tớ vài câu vớii

Câu 3:

Theo Vi-et, ta có;

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3\\x_1x_2=\dfrac{c}{a}=-5\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2\cdot\left(-5\right)=19\)

\(T=G\left(x_1\right)\cdot G\left(x_2\right)\)

\(=\left(x_1^2-4\right)\left(x_2^2-4\right)\)

\(=\left(x_1x_2\right)^2-4\left(x_1^2+x_2^2\right)+16\)

\(=\left(-5\right)^2-4\cdot19+16\)

=25+16-76

=25-60

=-35

Câu 4: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\7-3x>=0\end{matrix}\right.\)

=>\(\dfrac{5}{3}< =x< =\dfrac{7}{3}\)

\(\sqrt{3x-5}+\sqrt{7-3x}=9x^2-36x+38\)

=>\(\sqrt{3x-5}-1-1-\sqrt{7-3x}=9x^2-18x-18x+36\)

=>\(\dfrac{3x-5-1}{\sqrt{3x-5}+1}-\left(1+\sqrt{7-3x}\right)=\left(x-2\right)\left(9x-18\right)\)

=>\(\dfrac{3x-6}{\sqrt{3x-5}+1}-\dfrac{7-3x-1}{\sqrt{7-3x}-1}=\left(x-2\right)\left(9x-18\right)\)

=>\(\dfrac{3\left(x-2\right)}{\sqrt{3x-5}+1}+\dfrac{3\left(x-2\right)}{\sqrt{7-3x}-1}-\left(x-2\right)\left(9x-18\right)=0\)

=>\(\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-5}+1}+\dfrac{3}{\sqrt{7-3x}-1}-9x+18\right)=0\)

=>x-2=0

=>x=2(nhận)

 

Nguyễn Đức Trí
9 tháng 9 lúc 15:28

Câu 1 :

\(4\sqrt{x+3}=1+4x-\dfrac{1}{x}\left(x\ge-3;x\ne0\right)\)

\(\Leftrightarrow4x\sqrt{x+3}=x+4x^2-1\)

\(\Leftrightarrow4x^2-4x\sqrt{x+3}+x+3-4=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{x+3}=2\\2x-\sqrt{x+3}=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x-2\left(1\right)\\\sqrt{x+3}=2x+2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\x+3=4x^2-8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\4x^2-9x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{65}}{8}\\x=\dfrac{9-\sqrt{65}}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{9+\sqrt{65}}{8}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2x+2\ge0\\x+3=4x^2+8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\4x^2+7x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{8}\\x=\dfrac{-7-\sqrt{33}}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{8}\)

Vậy \(x\in\left\{x=\dfrac{-7+\sqrt{33}}{8};x=\dfrac{9+\sqrt{65}}{8}\right\}\)

Câu 6 :

 \(x^2-y^2+2\left(3x+y\right)=29\)

\(\Leftrightarrow x^2-6x+9-\left(y^2-2y+1\right)=28\)

\(\Leftrightarrow\left(x-3\right)^2-\left(y-1\right)^2=28\)

\(\Leftrightarrow\left(x-3+y-1\right)\left(x-3-y+1\right)=28\)

\(\Leftrightarrow\left(x+y-4\right)\left(x-y-2\right)=28\)

\(\Leftrightarrow\left(x+y-4\right);\left(x-y-2\right)\in U\left(28\right)=\left\{-1;1;-2;2;-4;4;-7;7;-14;14;-28;28\right\}\)

\(\Leftrightarrow\left(x;y\right)=\left(-5;7\right);\left(-2;1\right);\left(-7;-3\right)\)  \(\left(x;y\in Z\right)\)

Vậy \(\left(x;y\right)=\left(-5;7\right);\left(-2;1\right);\left(-7;-3\right)\)


Các câu hỏi tương tự
Ly Trần
Xem chi tiết
mynameisbro
Xem chi tiết
Qanh
Xem chi tiết
mynameisbro
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết