Hàm số y = x + 4 - x 2 với x ∈ - 2 ; 1 2 đạt giá trị lớn nhất tại x bằng
A. 1
B. 1 2
C. -2
D. -1
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) = (x-6) x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b + c.
A. 4
B. -2
C. -22
D. 5
Có tất cả bao nhiêu giá trị nguyên của m để giá trị lớn nhất của hàm số y = x 3 - x 2 + ( m 2 + 1 ) x - 4 m - 7 trên đoạn [ 0; 2]m không vượt quá 15 ?
A. 4
B . 6
C. 5
D. 8
Cho hàm số f(x) liên tục trên đoạn [0;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên [0;3]. Giá trị của M + m bằng ?
A. 5
B. 3
C. 2
D. 1
Giá trị lớn nhất của hàm số y = x - 2 + 4 - x là
A. 2 2
B. 4
C. 2
D. 2
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
A. 3
B. 4
C. 5
D. 1
Giá trị nhỏ nhất của hàm số y = \(x-5+\dfrac{1}{x}\) trên khoảng [0;+∞] bằng
A:0
B: -1
C: -3
D: -2
Hàm số y = x 3 - 6 x 2 có giá trị nhỏ nhất và giá trị lớn nhất trên đoạn [-1; 5] tương ứng là
A. –25 và –7
B. –7 và 0
C. –32 và 0
D. –32 và –7
Tìm giá trị lớn nhất của hàm số y = x - e 2 x trên đoạn [-1;1].
A. m a x [ - 1 ; 1 ] y = - ( ln 2 + 1 ) 2
B. m a x [ - 1 ; 1 ] y = 1 - e 2
C. m a x [ - 1 ; 1 ] y = - ( 1 + e - 2 )
D. m a x [ - 1 ; 1 ] y = ln 2 + 1 2