Đáp án là A.
Xét hàm số y = x 3 + 3 x 2 + 6 x - 7
Ta có y , = 3 x 2 + 6 x + 6 = 3 ( x + 1 ) 2 + 3 > 0 ∀ x ∈ ℝ
Do đó hàm số luôn đồng biến trên tập ℝ nên không có cực trị.
Đáp án là A.
Xét hàm số y = x 3 + 3 x 2 + 6 x - 7
Ta có y , = 3 x 2 + 6 x + 6 = 3 ( x + 1 ) 2 + 3 > 0 ∀ x ∈ ℝ
Do đó hàm số luôn đồng biến trên tập ℝ nên không có cực trị.
Cho hàm số y=f(x) có đồ thị y=f'(x) cắt trục Ox hoành tại ba điểm có hoành độ -2<a<b như hình vẽ. Biết rằng f(-2)+f(1)=f(a)+f(b). Để hàm số y = f ( x + m ) có 7 điểm cực trị thì mệnh đề nào dưới đây là đúng
A. f(a)>0>f(-2)
B. f(-2)>0>f(a)
C. f(b)>0>f(a)
D. f(b)>0>f(-2)
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Hỏi hàm số y = f 5 x x 2 + 4 đồng biến trên khoảng nào dưới đây ?
A. ( - ∞ ; - 2 ) .
B. (0;2).
C. (2;4).
D. (-2;1)
Cho hàm số y=f(x) có đồ thị đạo hàm y=f’(x) được cho như hình vẽ bên và các mệnh đề sau:
(1). Hàm số y=f(x) có duy nhất 1 điểm cực trị
(2). Hàm số y=f(x) nghịch biến trên khoảng (-2;1)
(3). Hàm số y=f(x) đồng biến trên khoảng 0 ; + ∞
(4). Hàm số g x = f x + x 2 có 2 điểm cực trị.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Cho a,b,c∈R sao cho hàm số y=x 3 + ax 2 + bx + c đạt cực trị tại x = 2 đồng thời có y(0)=1 và y(2)=-3. Hỏi trong không gian Oxyz, điểm M(a;b;c) nằm trong mặt cầu nào sau đây?
A. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 16 .
B. ( x - 2 ) 2 + ( y - 3 ) 2 + ( z + 5 ) 2 = 64 .
C. x 2 + y 2 + ( z + 5 ) 2 = 36 .
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 .
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Hàm số y=f(x) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) , ∀ x ∈ R . Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây ?
A. ( 2 ; + ∞ ) .
B. (0;2).
C. ( - ∞ ; 0 ) .
D. ( 1 ; + ∞ ) .
Cho hàm số y = f ( x ) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét 4 mệnh đề sau
(1) Hàm số y = f ( x ) đạt cực đại tại x 0 = 0
(2) Hàm số y = f ( x ) có ba cực trị.
(3) Phương trình y = f ( x ) có đúng ba nghiệm phân biệt
(4) Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Hỏi trong 4 mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 1
B. 3
C. 4
D. 2
Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x ( x 2 − 1 ) 2 ( x + 2 ) 3 . Khi đó số điểm cực trị của hàm số y = f x 2 là bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = - 2017 ( x - 1 ) ( x + 2 ) 3 ( x - 3 ) 2 Tìm số điểm cực trị của f(x)
A. 3
B. 2
C. 0
D. 1
Cho hàm số y = f ( x ) có đồ thị như hình vẽ.
Biết tất cả các điểm cực trị của hàm số y = f ( x ) là – 2, 0, 2, a , 6 với 4 < a < 6. Số điểm cực trị của hàm số y = f ( x 6 − 3 x 2 ) là
A. 8
B. 11
C. 9
D. 7