Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
Cho tam giác MPQ có 3 góc đều nhọn nội tiếp trong đường tròn (O) . Hai đường cao MI và QK cắt nhau tại H , đường cao MI cắt đường tròn (O) ngoại tiếp tam giác MQP tại N . Vẽ đường kính ME . Chứng minh :
a) QH=QN
b) Tứ giác PNEQ là hình thang cân
c) HE đi qua trung điểm F của QP
Cho đường tròn (O:R) đường kính AB . Hai dây AD và BC cắt nhau tại E trong (O) . Kẻ EF⊥AB tại F . Chứng minh
1) AE.AD = AF.AB
2) AE.AD +BE . BC = 4R2
Cho hai đương tròn (O; R)và (O'R) cắt nhau tại A, B sao cho khoang cách giữa hai tâm lớn hơn R. Nối OA cắt đường tròn (o') tại C. Tia OO' cắt đường tròn tâm O' tại D. CMR cung CO'D= 3cung AOD
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Tia BD và tia CE cắt đường tròn (O) lần lượt tại M, N (M khác B, N khác C)a) Chứng minh bốn điểm B, C, D, E cùng nằm trên một đường tròn.b) Chứng minh DE // MNc) Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Tia KH cắt đường tròn (O) tại điểm thứ hai là Q. Tứ giác BHCQ là hình gì? Tại sao?d) Gọi giao điểm của HQ và BC là I. Chứng minh OI/MN > 1/4
Cho đường tròn (O; R). Một đường thẳng d cắt đường tròn (O) tại hai điểm C và D. Từ một điểm I thuộc đường thẳng d, ở ngoài đường tròn (O) sao cho ID > IC, kẻ hai tiếp tuyến IA và IB tới đường tròn (O). Gọi H là trung điểm của CD.
1. Chứng minh năm điểm A, H, O, B, I cùng thuộc một đường tròn.
2. Giả sử AI = AO, khi đó tứ giác AOBI là hình gì? Tính diện tích hình tròn ngoại tiếp tứ giác AOBI?
3. Chứng minh rằng khi I di chuyển trên đường thẳng d thỏa mãn: Ở ngoài (O) và ID > IC thì AB luôn đi qua một điểm cố định.
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M sao cho số đo cung MB bằng hai lần số đo cung MC. Gọi N là giao điểm của AM và CD a) chứng minh ∆OMN cân b) chứng minh AM.AN = AO.AB
1.Cho nửa đường tròn (O) có đường kính BC và dây cung EF sao cho các điểm F,C nằm khác phía so với đường thẳng BE. Hai dây cung BE,CF cắt nhau tại điểm H; tia BF và CE cắt nhau tại A. Đường thẳng AH cắt đường thẳng BC tại D. Chứng minh 2. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC với đường tròn (O) . Trên đoạn OB lấy điểm (I khác B, I khác O). Đường thẳng AI cắt đường tròn (O) tại điểm D và E( D nằm giữa A và E). Chứng minh =AD.AE
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
Em chưa học tứ giác nội tiếp nên có thể giải cho em cách khác được không ạ?