\(\Delta'=m+2\ge0\Rightarrow m\ge-2\)
Khi đó theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+m-1\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4m^2+8m+4-2m^2-2m+2\)
\(A=2m^2+6m+6=2\left(m^2+2.\frac{3}{2}m+\frac{9}{4}\right)+\frac{3}{2}\)
\(A=2\left(m+\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(m=-\frac{3}{2}\)