tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
giải các BPT sau
a) \(\left|\dfrac{x^2-5x+4}{x^2-4}\right|\le1\)
b) \(\left|x^2-3x+2\right|+x^2>2x\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giúp tui bài tập này với :
Lập bảng xét dấu các biểu thức :
\(C=\dfrac{\left(x^2-1\right)\left(x-1\right)}{\left(2x-5\right)\left(3-x\right)}\)
giải hệ bpt:
\(\left\{{}\begin{matrix}\frac{x^2+3x-1}{2-x}>-x\\\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\end{matrix}\right.\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
Giai các phương trình sau : ( đặt ẩn phụ )
a/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b/ \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
c/ \(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x-4\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
Tập nghiệm của bất pt
a) \(\left|3x+1\right|>2\)
b) \(\left|2x-1\right|\le1\)
c) \(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\). Số nghiệm nguyên nhỏ hơn 13 của bất pt
d) \(\dfrac{\left|x+2\right|-x}{x}\le2\)