\(\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(x^4-x^2-2=0\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)(do \(x^2+1>0\forall x\))
<=>\(\left(x^2-2\right)\left(x^2+1\right)=0\)
<=>\(x^2-2=0\)(do \(x^2+1\)>0 với mọi x)
<=>\(x^2=2\)
<=>x=\(\pm\sqrt{2}\)
\(\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)
Ta có: \(x^2+1\ge0\) với mọi x nên
\(x^2-2=0\Leftrightarrow x=\sqrt{2}\)
Đặt x^2 = t ( t >= 0 )
t^2 - t - 2 = 0
,=> t^2 - 2t + t - 2 = 0
<=> t(t-2) + (t-2) = 0 <=> (t+1)(t-2) = 0 <=> t = -1 (ktm) ; t = 2
=> x= \(\pm\sqrt{2}\)
\(x^4-x^2-2=0\\ \Leftrightarrow x^4+x^2-\left(2x^2-2\right)=0\\ \Leftrightarrow x^2.\left(x^2+1\right)-2.\left(x^2+1\right)=0\\ \Leftrightarrow\left(x^2-2\right).\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=\pm\sqrt{2}\\ \Rightarrow S=\left\{\pm2\right\}\)