\(k.\left\{{}\begin{matrix}\dfrac{3x}{2}=\dfrac{y}{3}\\5x-7y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y}{3}:\dfrac{3}{2}=\dfrac{2y}{9}\\5\cdot\dfrac{2y}{9}-7y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}y\\\dfrac{10}{9}y-7y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}y\\-\dfrac{53}{9}y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}\cdot\dfrac{-9}{53}=\dfrac{-2}{53}\\y=1:-\dfrac{53}{9}=\dfrac{-9}{53}\end{matrix}\right.\)
\(m.\left\{{}\begin{matrix}2x-3y=7\\3x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-9y=21\\6x+4y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}13y=-13\\3x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{13}=-1\\3x-2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\3x=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
\(n.\left\{{}\begin{matrix}2x-y=3\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+4y=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-2=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1+2=1\end{matrix}\right.\\ p.\left\{{}\begin{matrix}3x-2y=4\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-6y=12\\8x-6y=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\4\cdot2-3y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\3y=8-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{3}{3}=1\end{matrix}\right.\)