Bài 6: Hệ thức lượng trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Giải tam giác ABC, biết b = 32, c =45, \(\widehat A = {87^o}\)

Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:24

Tham khảo:

 

Ta cần tính cạnh BC, góc B và góc C.

 

Áp dụng định lí cosin tại đỉnh A ta có:

\({a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\)

\(\begin{array}{l} \Leftrightarrow B{C^2} = {32^2} + {45^2} - 2.32.45.\cos {87^o}\\ \Leftrightarrow B{C^2} \approx 2898,27\\ \Leftrightarrow BC \approx 53,8\end{array}\)

Theo định lí sin, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Rightarrow \sin B = \frac{{b.\sin A}}{a} = \frac{{32.\sin {{87}^o}}}{{53,8}} \approx 0,594.\)

\( \Rightarrow \widehat B \approx 36,{44^o}\) hoặc \(\widehat B \approx 143,{56^o}\)(Loại vì \(\widehat A + \widehat B = 230,{56^o} > {180^o}\))

\( \Rightarrow \widehat C = {180^o} - \widehat A - \widehat B \approx {180^o} - {87^o} - 36,{44^o} = 56,{56^o}\)

Vậy tam giác ABC có \(BC \approx 53,8\); \(\widehat B \approx 36,{44^o}\) và \(\widehat C = 56,{56^o}\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết