\(\frac{x+3}{x-4}-\frac{1}{x}=-\frac{5}{4x-x^2}\) (Điều kiện \(x\ne0\)và \(x\ne4\)
<=> \(\frac{x\left(x+3\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{5}{x\left(x-4\right)}\)
<=> x2 + 3x -x+4=5
<=> x2 + 2x -1=0
<=> (x+1)2-2=0
<=> \(\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)
=> \(\hept{\begin{cases}x_1=-1+\sqrt{2}\\x_2=-1-\sqrt{2}\end{cases}}\)
Cách khác ạ =)
\(\frac{x+3}{x-4}-\frac{1}{x}=\frac{-5}{4x-x^2}\left(đkxđ:x\ne0;4\right)\)
\(< =>\frac{\left(x+3\right).x}{\left(x-4\right).x}-\frac{1\left(x-4\right)}{\left(x-4\right).x}=\frac{5}{x\left(x-4\right)}\)
\(< =>\left(x+3\right).x-\left(x-4\right)=5\)
\(< =>x^2+3x-x+4=5\)
\(< =>x^2+2x-1=0\)
Ta có : \(\Delta=2^2-4\left(-1\right)=0\)
Vì delta = 0 nên phương trình sẽ có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2}{2}=-1\)
Vậy nghiệm của phương trình là -1
Đúng không nhỉ ?