Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hằng

Giải pt:

\(\frac{x+3}{x-4}-\frac{1}{x}=\frac{-5}{4x-x^{ }2}\)

Bùi Thế Hào
14 tháng 3 2018 lúc 9:27

\(\frac{x+3}{x-4}-\frac{1}{x}=-\frac{5}{4x-x^2}\) (Điều kiện \(x\ne0\)và \(x\ne4\)

<=> \(\frac{x\left(x+3\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{5}{x\left(x-4\right)}\)

<=> x2 + 3x -x+4=5

<=> x2 + 2x -1=0

<=> (x+1)2-2=0

<=> \(\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)

=> \(\hept{\begin{cases}x_1=-1+\sqrt{2}\\x_2=-1-\sqrt{2}\end{cases}}\)

Phan Nghĩa
20 tháng 6 2020 lúc 15:09

Cách khác ạ =)

\(\frac{x+3}{x-4}-\frac{1}{x}=\frac{-5}{4x-x^2}\left(đkxđ:x\ne0;4\right)\)

\(< =>\frac{\left(x+3\right).x}{\left(x-4\right).x}-\frac{1\left(x-4\right)}{\left(x-4\right).x}=\frac{5}{x\left(x-4\right)}\)

\(< =>\left(x+3\right).x-\left(x-4\right)=5\)

\(< =>x^2+3x-x+4=5\)

\(< =>x^2+2x-1=0\)

Ta có : \(\Delta=2^2-4\left(-1\right)=0\)

Vì delta = 0 nên phương trình sẽ có nghiệm kép 

\(x_1=x_2=-\frac{b}{2a}=-\frac{2}{2}=-1\)

Vậy nghiệm của phương trình là -1

Đúng không nhỉ ?

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tiến Nguyễn Minh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
BoY
Xem chi tiết
đức đào
Xem chi tiết
Rita Yoo
Xem chi tiết
Trí Phạm
Xem chi tiết
린 린
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Trần Anh Đại
Xem chi tiết