bài dễ mà :)
Pt ẩn x : \(\left(m^2-1\right)x=m+1\) ( 1 )
\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)
- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)
Nếu \(m+1=0\Leftrightarrow m=-1\)
Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm
Nếu \(m-1=0\Leftrightarrow m=1\)
Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm
Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)
* \(m=-1\)pt ( 1 ) vô số nghiệm
* \(m=1\)pt ( 1 ) vô nghiệm
\(\left(m^2-1\right)x=m+1\) \(\left(1\right)\)
+) Nếu \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
Phương trình có nghiệm duy nhất \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)
+) Nếu \(m=1\)
\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )
+) Nếu \(m=-1\)
\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )
Vậy với \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất \(x=\frac{1}{m-1}\)
với m =1 thì phương trình vô nghiệm
với m = -1 thì phương trình có nghiệm đúng với mọi x
Bài giải đã được 3 tháng mà m vẫn còn nhai lại bài t giải hay sao hã ?????