\(\sqrt{4x^2-4x+1}=x-16\)
⇔\(\sqrt{\left(2x-1\right)^2}=x-16\)
⇔\(\left|2x-1\right|\) = \(x-16\)
⇔\(\left[{}\begin{matrix}2x-1=x-16\\2x-1=16-x\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}2x-x=-16+1\\2x+x=16+1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-15\\x=\dfrac{17}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-15;\dfrac{17}{3}\right\}\)
Ta có: \(4x^2-4x+1=\left(2x-1\right)^2\ge0\forall x\)
ĐKXĐ: Với mọi giá trị thực của x.
\(\sqrt{4x^2-4x+1}=x-16\) (1)
\(\Leftrightarrow\) \(\sqrt{\left(2x-1\right)^2}=x-16\)
\(\Leftrightarrow\) \(\left|2x-1\right|=x-16\) (2)
- Nếu \(x\ge\dfrac{1}{2}\), hay \(2x-1\ge0\) thì ta có:
(2) \(\Leftrightarrow\) \(2x-1=x-16\)
\(\Leftrightarrow\) \(x=-15\) (loại vì \(x\ge\dfrac{1}{2}\) )
- Nếu \(x< \dfrac{1}{2}\), hay \(2x-1< 0\) thì ta có:
(2) \(\Leftrightarrow\) \(1-2x=x-16\)
\(\Leftrightarrow\) \(3x=17\)
\(\Leftrightarrow\) \(x=\dfrac{17}{3}\) (loại vì \(x< \dfrac{1}{2}\) )
Vậy phương trình (1) vô nghiệm.