Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huân Nông

giải phương trình
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)
\(^{x^2-1=\left|x+1\right|}\)

Nobi Nobita
13 tháng 4 2020 lúc 16:16

a) \(ĐKXĐ:x\ne\pm3\)

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

b) \(x^2-1=\left|x+1\right|\)(1)

TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)

\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)

(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)

\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐK ta thây không có giá trị nào của x thoả mãn

TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)

\(\Rightarrow\left|x+1\right|=x+1\)

(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)

\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
13 tháng 4 2020 lúc 16:06

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)

\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x-1=0

<=> x=1 (tmđk)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lan Anh Nguyễn
Xem chi tiết
Giang Nguyễn Hương
Xem chi tiết
Lê Thị Hà
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Hoàng Xuân Trung Anh
Xem chi tiết
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Trieu Trinh Duc
Xem chi tiết
Khải Nhi Vương
Xem chi tiết
꧁WღX༺
Xem chi tiết