đề bài là: \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=3\)
ĐKXĐ: \(x\ge-\frac{1}{4}\)
\(x+\sqrt{x+\frac{1}{4}+2.\frac{1}{2}\sqrt{x+\frac{1}{4}}+\left(\frac{1}{2}\right)^2}=3\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=3\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=3\)
\(\Leftrightarrow x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}+\frac{1}{4}=3\)
\(\Leftrightarrow\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2=3\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=\sqrt{3}\) (do \(\sqrt{x+\frac{1}{4}}+\frac{1}{2}>0\) với mọi x)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\sqrt{3}-\frac{1}{2}\)
\(\Leftrightarrow x+\frac{1}{4}=\left(\sqrt{3}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow...\)