Đặt \(\hept{\begin{cases}x+5=a\\x-4=b\end{cases}\Rightarrow2x+1=a+b}\)
\(\left(x+5\right)^4+\left(x-4\right)^4=\left(2x+1\right)^4\)
\(\Rightarrow a^4+b^4=\left(a+b\right)^4\)
\(\Rightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\Rightarrow4a^3b+6a^2b^2+4ab^3=0\)
\(\Rightarrow4ab\left[a^2+\frac{3}{2}ab+b^2\right]=0\)(1)
Mà \(a^2+\frac{3}{2}ab+b^2=\left(a+\frac{3}{4}b\right)^2+\frac{7}{16}b^2>0\)(2)
(vì nếu a và b đồng thời bằng 0 thì x + 5 và x - 4 đồng thời = 0 điều đó vô lý)
Từ (1) và (2), ta được
\(\orbr{\begin{cases}a=0\\b=0\end{cases}\Rightarrow}\orbr{\begin{cases}x+5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}}\)
Chúc bạn học tốt.