\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow x^3-3x^2-8x+24=8\sqrt[4]{4x+4}-16\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{4096\left(4x+4\right)-65536}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)-\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}\right)=0\)
Dễ thấy: \(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}=0\) vô nghiệm
Nên \(x-3=0\Rightarrow x=3\)
Dùng cốc cốc cũng chia sẽ cho mọi người thêm 1 cách giải khác,mặt dù nó không giải chi tiết ra :v
Cách này tui tự làm :
ĐK : \(x\ge-1\)
Phân tích :
\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(=4\sqrt[4]{2^4}\cdot\sqrt[4]{4x+4}\)
\(=4\cdot\sqrt[4]{\left(2^4\right)\cdot\left(4\left(x+1\right)\right)}\)
\(=4\sqrt[4]{4\left(4\cdot4\cdot4\right)\left(x+1\right)}\le4+4+4+x+1=x+13\)
Từ đây suy ra :
\(x^3-3x^2-8x+40\le x+13\)
\(\Leftrightarrow x^3-3x^2-9x+27\le0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+3\right)=0\)\(\Leftrightarrow\)x = 3 hoặc x = -3
Đối chiếu với điều kiện ta được x =3
xời copy thì nói luôn ra vòng với chả vo Giải phương trình: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán