ĐKXĐ : \(x\ge-\dfrac{1}{3}\) và \(x\ne-\dfrac{10}{3}\)
\(\dfrac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Đặt : \(\sqrt{3x+1}=t\) thì phương trình trở thành :
\(\dfrac{t^2-1}{t+9}=t-1\)
\(\Leftrightarrow\) \(\dfrac{t^2-1}{t+9}=\dfrac{\left(t-1\right)\left(t+9\right)}{t+9}\)
\(\Leftrightarrow t^2-1=\left(t-1\right)\left(t+9\right)\)
\(\Leftrightarrow t^2-1=t^2+8t-9\)
\(\Leftrightarrow t^2-1-t^2-8t+9=0\)
\(\Leftrightarrow-8t+8=0\)
\(\Leftrightarrow t=1\)
Với \(t=1\) :
\(\Leftrightarrow\sqrt{3x+1}=1\)
\(\Leftrightarrow3x+1=1\)
\(\Leftrightarrow3x=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
Wish you study well !!