Điều kiện xác định
\(\hept{\begin{cases}x-1\ge0\\1-x\ge0\\1-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1\\-1\le x\le1\end{cases}}\Leftrightarrow x=1\)
Thế x = 1 vào pt ta được
0 = 1 (sai)
Vậy pt vô nghiệm
Điều kiện xác định
\(\hept{\begin{cases}x-1\ge0\\1-x\ge0\\1-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le1\\-1\le x\le1\end{cases}}\Leftrightarrow x=1\)
Thế x = 1 vào pt ta được
0 = 1 (sai)
Vậy pt vô nghiệm
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
giải những phương trình sau:
1. \(\sqrt{x^2+1}=\sqrt{5}\)
2. \(\sqrt{2x-1}=\sqrt{3}\)
3. \(\sqrt{43-x}=x-1\)
4. \(x-\sqrt{4x-3}=2\)
5. \(\dfrac{\sqrt{x}+1}{\sqrt{x+3}}=\dfrac{1}{2}\)
giải phương trình sau:
a)\(2\left(1-x\right)\sqrt{x^2+2x-1}+2x+1=x^2\)
b)\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
Giải các phương trình sau:
a) \(\sqrt{2x-1}+\sqrt{x-1}=5\)
b) \(x^2+2x+7=3\sqrt{\left(x^2+1\right).\left(x+3\right)}\)
Bài 1. Giải các phương trình sau:
1) \(\sqrt{2x-1}=\sqrt{5}\) 2) \(\sqrt{x-5}=3\) 3) \(\sqrt{9\left(x-1\right)}=21\) 4) \(\sqrt{2}x-\sqrt{50}=0\)
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
Bài 2. Giải các phương trình sau. a) 3x - 2sqrt(x - 1) = 4 b) sqrt(4x + 1) - sqrt(x + 2) = sqrt(3 - x) c) (sqrt(x - 1) - sqrt(5 - x))(|10 - x| + 2x - 16) = 0
Giải các phương trình sau:
1/ \(2x^2-8x+\sqrt{x^2-4x+16}=4\)
2/\(3\left(x^2+2\right)=10\sqrt{x^3+1}\)
3/\(\sqrt{3\left(1-x\right)}-\sqrt{3+x}=2\)
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)