\(PT\Leftrightarrow x^2+y^2+z^2-xy-yz=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+xy+yz-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+y\left(x+z-y\right)=0\)
Do \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\Rightarrow y\left(x+z-y\right)\ge0\)
Mà vế phải bằng 0 nên
\(\hept{\begin{cases}x-y=0\\y-z=0\\y\left(x+z-y\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=0\end{cases}}\Leftrightarrow x=y=z=0\)
chưa chắc là y(x+z-y) sẽ > 0 đâu bạn ạ nếu y<0 thì nó sẽ< hơn