ta có: x²+ 3x + 2 =(x+1)(x+2)
x² + 4x + 3 =(x +1)(x+3)
x^2 + 5x + 4 = (x+1)(x+4)
pt trình trên chuyển hết sang một vế ta đc:
(✓x+1)(√x+2 + √x+3 - 2√x+4 ) = 0
th1: x+1 = 0 ⇒ x= -1
th2: √x+2 + √x+3 = 2√x+4
⇔ (√x+2 + √x+3 )^2 = 4(x+4)
(cậu tự giải ra nốt đi chứ mình lười đánh tay lắm nha)
⇒ x∈ Ø
vậy x =1
ĐKXĐ: \(\begin{cases}x^2+3x+2\ge0\\ x^2+4x+3\ge0\\ x^2+5x+4\ge0\end{cases}\Rightarrow\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\ \left(x+3\right)\left(x+1\right)\ge0\\ \left(x+4\right)\left(x+1\right)\ge0\end{cases}\)
=>\(\left[\begin{array}{l}x\ge-1\\ x\le-4\end{array}\right.\)
\(\sqrt{x^2+3x+2}+\sqrt{x^2+4x+3}=2\sqrt{x^2+5x+4}\)
=>\(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+3\right)}=2\cdot\sqrt{\left(x+1\right)\left(x+4\right)}\)
=>\(\sqrt{x+1}\left(\sqrt{x+2}+\sqrt{x+3}-2\sqrt{x+4}\right)=0\)
=>\(\sqrt{x+1}=0\)
=>x+1=0
=>x=-1(nhận)