\(PT\Leftrightarrow\left(x^3+6x^2+11x-2\right)^2+13\left(x^3+6x^2+11x-2\right)+40=0\\ \Leftrightarrow\left(x^3+6x^2+11x-2+5\right)\left(x^3+6x^2+11x-2+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3+6x^2+11x+3=0\left(\text{vô nghiệm}\right)\\x^3+6x^2+11x+6=0\end{matrix}\right.\\ \Leftrightarrow x^3+6x^2+11x+6=0\\ \Leftrightarrow x^3+x^2+5x^2+5x+6x+6=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+5x+6\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+3x+6\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-3\end{matrix}\right.\)