\(sinx-cos\left(x+\dfrac{\Omega}{6}\right)=0\)
=>\(sinx=cos\left(x+\dfrac{\Omega}{6}\right)\)
=>\(sinx=sin\left(\dfrac{\Omega}{2}-x-\dfrac{\Omega}{6}\right)=sin\left(\dfrac{\Omega}{3}-x\right)\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}-x+k2\Omega\\x=\Omega-\dfrac{\Omega}{3}+x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Omega}{3}+k2\Omega\\0=\dfrac{2}{3}\Omega+k2\Omega\left(loại\right)\end{matrix}\right.\)
=>\(2x=\dfrac{\Omega}{3}+k2\Omega\)
=>\(x=\dfrac{\Omega}{6}+k\Omega\)