Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Hiển

Giải phương trình

\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)

Nguyễn Việt Lâm
16 tháng 9 2019 lúc 15:59

ĐKXĐ: \(x\ne2\)

Áp dụng HĐT: \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)

\(\Leftrightarrow\left(\frac{x-3}{x-2}-x+3\right)^3+\frac{3\left(x-3\right)^2}{x-2}\left(\frac{x-3}{x-2}-x+3\right)=16\)

\(\Leftrightarrow\left(\left(x-3\right)\left(\frac{1}{x-2}-1\right)\right)^3+\frac{3\left(x-3\right)^3}{x-2}\left(\frac{1}{x-2}-1\right)=16\)

\(\Leftrightarrow\left(\frac{-\left(x-3\right)^2}{x-2}\right)^3-\frac{3\left(x-3\right)^4}{\left(x-2\right)^2}-16=0\)

Đặt \(\frac{\left(x-3\right)^2}{x-2}=a\Rightarrow-a^3-3a^2-16=0\Rightarrow a=-4\)

\(\Rightarrow\left(x-3\right)^2+4\left(x-2\right)=0\Rightarrow x^2-2x+1=0\Rightarrow x=1\)


Các câu hỏi tương tự
Băng
Xem chi tiết
Bùi Quỳnh Hoa
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
ghdoes
Xem chi tiết
Nguyễn Anh Kim Hân
Xem chi tiết
dia fic
Xem chi tiết
Big City Boy
Xem chi tiết
poppy Trang
Xem chi tiết