Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
Giải các phương trình:
1) \(\sqrt{x^2-2x+1}=x^2-1\)
2) \(\sqrt{4x^2-4x+1}=x-1\)
3) \(\sqrt{x^4-2x^2+1}=x-1\)
4) \(\sqrt{x^2+x+\frac{1}{4}}=x\)
5) \(\sqrt{x^4-8x^2+16}=2-x\)
6) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
giải phương trình:
a/\(\frac{\sqrt{x}-2}{\sqrt{x}-5}=\frac{\sqrt{x}-4}{\sqrt{x}-6}\)
b/\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
c/\(\sqrt{4x-8}-\frac{1}{2}\sqrt{x-2}+\sqrt{9x-18}=9\)
Giải các phương trình:
1) \(\left|x^2-1\right|+\left|x+1\right|=0\)
2) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
3) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
4) \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Giải phương trình \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
Giải phương trình:
a) \(\sqrt{\left(x-2\right)^2}=\sqrt{x-2}\)
b) \(\sqrt{x^2-1}-\sqrt{x-1}\sqrt{2x+1}=0\)
c) \(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)
d) \(\sqrt{x}+\frac{16}{\sqrt{x}}=8\)
giải các phương trình sau
a)\(\sqrt{x^2-1}\)+1=x2
b)\(\sqrt{x-2}\)+\(\sqrt{x-3}\)= -5
c) \(\sqrt{x^2+4x+4}\)+|x-4|=0
giải các pt
1, \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
2, \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
3, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
4, \(2x^2+\sqrt{x^2-4x+12}=4x+8\)
5, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)