Giải các phương trình sau:
a) Sinx + \(\sqrt{3}\) Cosx + 2Sin(\(\dfrac{\Pi}{6}\)-x) = \(\sqrt{2}\)
b) 3Cosx - 4Sinx + \(\dfrac{2}{3Cosx-4Sinx-6}\)= 3
c) 8Sinx = \(\dfrac{\sqrt{3}}{Cosx}+\dfrac{1}{Sinx}\)
d) 3Sin3x - \(\sqrt{3}\) Cos9x = 1 + 4Sin33x
e) 5Sin2x - 6Cos2x = 13
f) Cos7x - \(\sqrt{3}\) Sin7x - Sinx = \(\sqrt{3}\) Cos x
Giải phương trình:
a, \(cos^3x-sin^3x=cosx+sinx\).
b, \(2sinx+2\sqrt{3}cosx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\).
3.3 .giải phương trình
d) sin 8x - cos 6x = \(\sqrt{3}\)(sin 6x + cos 8x)
3.4 .giải pt
a) 2sin(\(x+\dfrac{\pi}{4}\)) + 4 sin (\(x-\dfrac{\pi}{4}\)) = \(\dfrac{3\sqrt{5}}{2}\)
b)3 sin (x-\(\dfrac{\pi}{3}\)) + 4 sin (x +\(\dfrac{\pi}{6}\)) + 5 sin(5x +\(\dfrac{\pi}{6}\)) = 0
3.9 a) 8sin x =\(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)
b)\(2\sqrt{sinx}=\dfrac{\sqrt{3}tanx}{2\sqrt{sinx}-1}-1\)
mọi người ơi giúp mình với mình sắp phải kiểm tra rồi
Giải phương trình :\(sinx=\dfrac{1}{3}\left(3-\sqrt{3}cosx\right)\)
1> 1 + sinx + cosx + sin2x + cos2x = 0
2> cos2x + 3sin2x + 5 sinx - 3cosx = 3
3> \(\dfrac{\sqrt{2}*(cosx - sinx)}{cotx - 1}\) = \(\dfrac{1}{tanx + cot2x}\)
4> (2cosx - 1)*(2sinx + cosx) = sin2x - sinx
Giải phương trình:
\(2cos^2x+2\sqrt{3}sinxcosx+1=3\left(sinx+\sqrt{3}cosx\right)\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
1)\(\dfrac{1+sin2x+cos2x}{1+cot^2x}\)=\(\sqrt{2}\)sinxsin2x
2)sin2xcosx+sinxcosx=cos2x+sinx+cosx
3)\(\dfrac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0
Mấy bạn giải giúp mình nha,đang cần gấp
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)