Điều kiện \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x}+\sqrt{y+1}\ge1\\y+\sqrt{y}+\sqrt{y+1}\ge1\end{matrix}\right.\)
Dấu = xảy ra khi \(x=y=0\)
Điều kiện \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x}+\sqrt{y+1}\ge1\\y+\sqrt{y}+\sqrt{y+1}\ge1\end{matrix}\right.\)
Dấu = xảy ra khi \(x=y=0\)
Giải hpt :
\(\left\{{}\begin{matrix}\sqrt{x^2+y}+\sqrt{3}=\sqrt{y^2-3x}+\sqrt{7}\\\sqrt{y-1}+2y^2+1=\sqrt{x}+x^2+xy+3y\end{matrix}\right.\)
1/ cho 2 hs y = x-1 và y = -2x +5
a/ Vẽ đồ thị hai hàm số đã cho trên cùng một mặt phảng tọa độ
b/ bằng phép tính tìm tọa độ giao điểm của 2 hs trên
2/ giải pt và hpt
a/ x\(^2\) -3x -2 =0 b/ x\(^4\) -x\(^2\) -12 c/ \(\left\{{}\begin{matrix}2x-3y=6\\5x+3y=-8\end{matrix}\right.\)
3/ rút gọn
A=\(\dfrac{4+\sqrt{15}}{4-\sqrt{15}}\) - \(\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\) B= 3 + \(\left(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\) . 3+\(\dfrac{a+5\sqrt{a}}{5-\sqrt{a}}\)\(\)
4/ cho tam giác ABC vuông tại A , AB=4.5 cm , AC=6 cm .
1) tính đcao AI và Diện tích hình tròn ngoại tiếp tam giác ABC
2) trên cạnh AC lấy H.đường tròn đường kính HC , BH cắt (o) tại D, OA cắt (O) tại K , đường tròn (O) cắt BC tại E . Chứng minh
a) tứ giác ABCD ; ABHE nội tiếp
b) CA là phân giác góc KCB
Cho (P): y= x2-3x+m. Tìm m để (p) cắt Ox tại 2 điểm phân biệt có hoành độ x1,x2 sao cho \(\sqrt{x1^2+1}\)+\(\sqrt{x2^2+1}\)=\(3\sqrt{3}\)
lập phương trình đường tròn có tâm thuộc đường thẳng \(\Delta\) \(x+2y+3=0\), có bán kính \(R=\sqrt{2}\) và tiếp xúc với đường thẳng d : \(x-y+1=0\)
GIẢI PHƯƠNG TRÌNH BẰNG CÁCH ĐẶT ẨN PHỤ \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
Cho \(x\in R\) mệnh đề nào sau đây đúng: (giải thích)
A. \(\forall x,x^2>5\Rightarrow x>\sqrt{5}\) Hoặc \(x< -\sqrt{5}\)
B. \(\forall x,x^2>5\Rightarrow x>\pm\sqrt{5}\)
C. \(\forall x,x^2>5\Rightarrow x\ge\sqrt{5}\) hoặc \(x\le-\sqrt{5}\)
D.\(\forall x,x^2>5\Rightarrow-\sqrt{5}< x< \sqrt{5}\)
Tìm điều kiện tham số để hệ phương trình có nghiệm duy nhất :
1, \(\sqrt{x+1}+\sqrt{3-x}+2\sqrt{\left(x+1\right)\left(3-x\right)}=m\)
2, \(\sqrt{x^2+1}+\sqrt[3]{1-x^2}=m\)
3, \(\sqrt{x+2}+\sqrt{4-x}+4\sqrt{\left(x+2\right)\left(4-x\right)}=m\)
1,Giải pt sau:
\(\sqrt{2x+\sqrt{6x^2+1}}\)=x+1
Gía trị lớn nhất của: y= 3x + \(\sqrt{8-x^2}\) (\(-2\sqrt{2}\le x\le2\sqrt{2}\)) là:
A. \(3\sqrt{5}\) B. \(8\sqrt{5}\) C. \(4\sqrt{5}\) D. \(6\sqrt{5}\)