giải hpt:
\(\hept{\begin{cases}x+\frac{2xy}{\sqrt[3]{x^2-2x+9}}=x^2+y\\y+\frac{2xy}{\sqrt[3]{y^2-2y+9}}=y^2+x\end{cases}}\)
Giải hpt :
\(\hept{\frac{\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{x^2+xy+y^2}{3}}=x+y}{x\sqrt{2xy+5x+3}=4xy-5x-3}}\)
Giải HPT :
\(\int^{x^2+y^2+\frac{2xy}{x+y}=1}_{\sqrt{x+y}=x^2-y}\)
Giải phương trình nghiệm nguyên :
\(a)x^2-3xy+3y^2=3y\)
\(b)x^2-2xy+5y^2=y+1\)
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
a) Giải phương trình nghiệm nguyên \(2xy^2+x+y+1=x^2+2y^2+xy\)
b) tìm các số nguyên dương x;y sao cho \(\frac{x^3+x}{3xy-1}\)là một số nguyên
giải hệ phương trình
\(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
giải hpt\(\hept{\begin{cases}x^2+2xy-2x-y+1=0\\3x^2+xy+4x-y-7=0\end{cases}}\)