mn giúp mk bài này với ạ:
Bài 1 giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\left|x+1\right|+\sqrt{y}=5\\\left(x^2+2x+1\right)y=36\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}xy-\dfrac{x}{y}=\dfrac{16}{3}\\xy-\dfrac{y}{x}=\dfrac{9}{2}\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+xy+y=0\\x^2+y^2=8\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
CÁC BẠN LÀM CÂU NÀO CŨNG ĐƯỢC Ạ
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\left|2x-y\right|-2\left|y-x\right|=1\\3\left|2x-y\right|+\left|x+y\right|=10\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(\dfrac{x}{y}\right)^2+\left(\dfrac{x}{y}\right)^3=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
giải hệ pt:
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x}+\dfrac{3}{\sqrt{x}}=\sqrt{y}+\dfrac{3}{\sqrt{y}}\\2x-\sqrt{xy}-1=0\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy=1\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+x+y=3\\\dfrac{1}{x^2+2x}+\dfrac{1}{y^2+2y}=\dfrac{2}{3}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy-\dfrac{x}{y}=\dfrac{16}{3}\\xy-\dfrac{y}{x}=\dfrac{9}{2}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(\dfrac{x}{y}\right)^2+\left(\dfrac{x}{y}\right)^3=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)