\(\begin{cases}4x^2-2y^2=2\\ x^2+xy=2\end{cases}\)
=>\(4x^2-2y^2-x^2-xy=2-2=0\)
=>\(3x^2-xy-2y^2=0\)
=>\(3x^2-3xy+2xy-2y^2=0\)
=>3x(x-y)+2y(x-y)=0
=>(x-y)(3x+2y)=0
TH1: x-y=0
=>x=y
\(x^2+xy=2\)
=>\(x^2+x^2=2\)
=>\(2x^2=2\)
=>\(x^2=1\)
=>\(\left[\begin{array}{l}x=1\\ x=-1\end{array}\right.\)
Nếu x=1 thì y=x=1
Nếu x=-1 thì y=x=-1
TH2: 3x+2y=0
=>3x=-2y
=>\(x=-\frac{2y}{3}\)
\(x^2+xy=2\)
=>\(\left(-\frac{2y}{3}\right)^2+y\cdot\frac{-2y}{3}=2\)
=>\(\frac{4y^2}{9}-\frac{2y^2}{3}=2\)
=>\(-\frac{2y^2}{9}=2\)
=>\(y^2=-9\) <0(loại)
Vậy: (x;y)∈{(1;1);(-1;-1)}