Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Đỗ Phương Nam

Giải hệ phương trình :

\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\end{cases}\)

Trần Minh Ngọc
6 tháng 4 2016 lúc 13:57

 

\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\left(1\right)\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\left(2\right)\end{cases}\)

Điều kiện \(x\ge0\)

Nếu x=0, hệ phương trình không tồn tại

Vậy xét x>0

\(\Leftrightarrow3y+3y\sqrt{9y^2+1}=\frac{\sqrt{x+1}+\sqrt{x}}{x}\)

\(\Leftrightarrow3y+3y\sqrt{\left(3y\right)^2+1}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\sqrt{\left(\frac{1}{\sqrt{x}}\right)^2+1}\) (3)

Từ (1) và x>0 ta có y>0. Xét hàm số \(f\left(t\right)=t+t.\sqrt{t^2+1},t>0\)

Ta có \(f'\left(t\right)=1+\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}}>0\). Suy ra \(f\left(t\right)\) luôn đồng biến trên \(\left(0;+\infty\right)\)

Phương trình (3) \(\Leftrightarrow f\left(3y\right)=f\left(\frac{1}{\sqrt{x}}\right)\Leftrightarrow3y=\frac{1}{\sqrt{x}}\)

Thế vào phương trình (2) ta được : \(x^3+x^2+4\left(x^2+1\right)\sqrt{x}=10\)

Đặt \(g\left(x\right)=x^3+x^2+4\left(x^2+1\right)\sqrt{x}-10,x>0\)

Ta có \(g'\left(x\right)>0\) với \(x>0\) \(\Rightarrow g\left(x\right)\) là hàm số đồng biến trên khoảng (\(0;+\infty\))

Ta có g(1)=0

vậy phương trình g(x) = 0 có nghiệm duy nhất x = 1

Với x=1 => \(y=\frac{1}{3}\)

Vậy kết luận : Hệ có nghiệm duy nhất (\(1;\frac{1}{3}\))

 

Bình luận (0)

Các câu hỏi tương tự
Phạm Đắc Quyền
Xem chi tiết
Nguyệt Hà Đỗ
Xem chi tiết
Hoàng Huệ Cẩm
Xem chi tiết
Cung Đường Vàng Nắng
Xem chi tiết
Phạm Thị Bích Thạch
Xem chi tiết
Phương Anh
Xem chi tiết
Phương Anh
Xem chi tiết
Nguyễn Thị Thu Thảo
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết