Lời giải:
Vì \((x-y)^2.y=2\neq 0\Rightarrow x-y\neq 0\)
HPT \(\Leftrightarrow \left\{\begin{matrix} 19(x-y)^2.y=38\\ 2(x^3-y^3)=38\end{matrix}\right.\)
\(\Rightarrow 19y(x-y)^2=2(x^3-y^3)\)
\(\Leftrightarrow 19y(x-y)^2-2(x-y)(x^2+xy+y^2)=0\)
\(\Leftrightarrow (x-y)[19y(x-y)-2(x^2+xy+y^2)]=0\)
\(\Leftrightarrow 19y(x-y)-2(x^2+xy+y^2)=0\) (do $x-y\neq 0$)
\(\Leftrightarrow -2x^2-21y^2+17xy=0\)
\(\Leftrightarrow 2x^2-17xy+21y^2=0\)
\(\Leftrightarrow (x-7y)(2x-3y)=0\)
Nếu \(x=7y\Rightarrow 19=x^3-y^3=(7y)^3-y^3=342y^3\)
\(\Rightarrow y^3=\frac{1}{18}\Rightarrow y=\sqrt[3]{\frac{1}{18}}\Rightarrow x=\frac{7}{\sqrt[3]{18}}\)
Nếu \(x=\frac{3}{2}y\Rightarrow 19=x^3-y^3=(\frac{3}{2}y)^3-y^3=\frac{19}{8}y^3\)
\(\Rightarrow y^3=8\Rightarrow y=2\Rightarrow x=\frac{3}{2}y=3\)
Vậy \((x,y)=\left(\frac{1}{\sqrt[3]{18}}, \frac{7}{\sqrt[3]{18}}\right); (3,2)\)