Cho hình chóp S.ABCD có đáy là tam giác vuông cân tại B. SA vuông góc với đáy. SA = a căn 3. AC = a căn 2 a) Tính góc giữa đt SB và (ABC) b) Tính góc giữa đt AC và (SBC) c) Tính gics giữa đt BC và (SAC) d) Tính góc giữa đt SB và (BAC) e) Tính góc giữa đt SC và (SAB)
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình bình hành, các cạnh bên vuông góc với mặt đáy. \(\Delta\)ACD vuông tại A , AC=AA'. Chứng minh rằng: AC' \(\perp\)(A'D'C)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,AB=a√3 , cạnh bên SA vuông góc với mặt đáy , SA = a√3/2 , M là trung điểm của BC. a. Chứng minh BC vuông góc với (SAM) B. Tính góc giữa đường thẳng SM và mặt phẳng (ABC)
Cho hình chóp SABC, đáy tam giác ABC vuông tại B. Gọi H là hình chiếu của A lên SB(SA vuông góc (ABC)) a. Chứng minh: BC vuông góc (SAB) B. Gọi I là hình chiếu của B lên AC Chứng minh BI vuông góc (SAC) c. Kẻ AK vuông góc SC tại K, Chứng minh:AH vuông góc SC
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B , AB=BC=a . Cạnh bên SA vuông góc với mặt phẳng đáy, SA =a căn 2
a) CM BC vuông SB
b) Xác định và tính góc giữa SC và (ABC)
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi H là trực tâm của tam giác ABC và biết rằng A'H vuông góc với mặt phẳng (ABC). Chứng minh rằng :
a) \(AA'\perp BC\) và \(AA'\perp B'C'\)
b) Gọi MM' là giao tuyến của mặt phẳng (AHA') với mặt bên BCC'B', trong đó \(M\in BC,M'\in B'C'\). Chứng minh rằng tứ giác BCC'B' là hình chữ nhật và MM' là đường cao của hình chữ nhật đó ?
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với đáy. Hạ AH vuông góc với SB, AK vuông góc với SC.
a, CM các mặt bên của hình chóp là các tam giác vuông.
b, CM tam giác SHK vuông.
c, Gọi D là giao điểm của HK và BC. CM: AC vuông góc với AD.
Mình cần phần c thôi nhé!
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có tam giác ABC vuông tại B. Trong mặt phẳng (SAB) kẻ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho \(\dfrac{SM}{SB}=\dfrac{SN}{SC}\). Chứng minh rằng :
a) \(BC\perp\left(SAB\right)\) và \(AM\perp\left(SBC\right)\)
b) \(SB\perp AN\)