\(\dfrac{x+2}{x-4}=\dfrac{2x+3}{x-6}\) (ĐKXĐ: \(x\ne4;x\ne6\))
\(\Rightarrow\left(x+2\right)\left(x-6\right)=\left(2x+3\right)\left(x-4\right)\)
\(\Rightarrow x^2-6x+2x-12=2x^2-8x+3x-12\)
\(\Rightarrow x^2-x=0\)
\(\Rightarrow x\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)