Bài 4: Phương trình tích

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân Bùi

Giải các phương trình sau:

a) (x-1)(3x-7)=(x-1)(x+3)

b) (3x+1)(x-2)=(x-2)(x+1)

c) (x-3)^2 +2x-6=0

d)(2x-1)^2=9

e) x(x-1)=3(x-1)

f)x^2(x-3)=4(x-3)

g) x(x-5)=2(x-5)

Vũ Minh Tuấn
4 tháng 2 2020 lúc 18:54

a) \(\left(x-1\right).\left(3x-7\right)=\left(x-1\right).\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right).\left(3x-7\right)-\left(x-1\right).\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left(3x-7-x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left(2x-10\right)=0\)

\(\Leftrightarrow\left(x-1\right).2.\left(x-5\right)=0\)

\(2\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+1\\x=0+5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{1;5\right\}.\)

b) \(\left(3x+1\right).\left(x-2\right)=\left(x-2\right).\left(x+1\right)\)

\(\Leftrightarrow\left(3x+1\right).\left(x-2\right)-\left(x-2\right).\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x+1-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right).2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+2\\x=0:2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;0\right\}.\)

c) \(\left(x-3\right)^2+2x-6=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2x-6\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+2.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+3\\x=0+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;1\right\}.\)

d) \(\left(2x-1\right)^2=9\)

\(\Leftrightarrow\left(2x-1\right)^2=\left(\pm3\right)^2\)

\(\Leftrightarrow2x-1=\pm3.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4:2\\x=\left(-2\right):2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;-1\right\}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
4 tháng 2 2020 lúc 19:26

a) Ta có: \(\left(x-1\right)\left(3x-7\right)=\left(x-1\right)\left(x+3\right)\)

\(\left(x-1\right)\left(3x-7\right)-\left(x-1\right)\left(x+3\right)=0\)

\(\left(x-1\right)\left(3x-7-x-3\right)=0\)

\(\left(x-1\right)\left(2x-10\right)=0\)

\(\left(x-1\right)\cdot2\cdot\left(x-5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy: x∈{1;5}

b) Ta có: \(\left(3x+1\right)\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)

\(\left(3x+1\right)\left(x-2\right)-\left(x-2\right)\left(x+1\right)=0\)

\(\left(x-2\right)\left(3x+1-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot2x=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

c) Ta có: \(\left(x-3\right)^2+2x-6=0\)

\(\left(x-3\right)^2+2\left(x-3\right)=0\)

\(\left(x-3\right)\left(x-3+2\right)=0\)

\(\left(x-3\right)\left(x-1\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy: x∈{3;1}

d) Ta có: \(\left(2x-1\right)^2=9\)

\(\left(2x-1\right)^2-9=0\)

\(\left(2x-1-3\right)\left(2x-1+3\right)=0\)

\(\left(2x-4\right)\left(2x+2\right)=0\)

\(2\left(x-2\right)\cdot2\cdot\left(x+1\right)=0\)

\(4\left(x-2\right)\left(x+1\right)=0\)

Vì 4≠0

nên \(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy: x∈{2;-1}

e) Ta có: \(x\left(x-1\right)=3\left(x-1\right)\)

\(x\left(x-1\right)-3\left(x-1\right)=0\)

\(\left(x-1\right)\left(x-3\right)=0\)

\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy: x∈{1;3}

f) Ta có: \(x^2\left(x-3\right)=4\left(x-3\right)\)

\(x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\left(x-3\right)\left(x^2-4\right)=0\)

\(\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\x-2=0\\x+2=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)

Vậy: x∈{3;2;-2}

g) Ta có: \(x\left(x-5\right)=2\left(x-5\right)\)

\(x\left(x-5\right)-2\left(x-5\right)=0\)

\(\left(x-5\right)\left(x-2\right)=0\)

\(\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Vậy: x∈{5;2}

Khách vãng lai đã xóa

Các câu hỏi tương tự
lol Qn
Xem chi tiết
lol Qn
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Kim Vân
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Cô bé thần nông
Xem chi tiết
Vũ Huệ
Xem chi tiết