a, \(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow12x^3-10x^2-2x=0\)
\(\Leftrightarrow6x^3-5x^2-x=0\)
\(\Leftrightarrow x\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x^2-5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{6};0;1\right\}\)
b, \(5x^3-x^2-5x+1=0\)
\(\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1;\dfrac{1}{5};1\right\}\)
\(a,1,2x^3-x^2-0,2x=0\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\1,2x^2-x-0,2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{-1}{6}\end{matrix}\right.\)
\(b,5x^3-x^2-5x+1=0\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\\x=-1\end{matrix}\right.\)
a, 1,2x3-x2-0,2x=0
<=>x(1,2x2-x-0,2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5\left(1,2x^2-x-0,2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x^2-5x-1=0\left(1\right)\end{matrix}\right.\)
giải PT (1) 6x2-5x-1=0
a+b+c=6-5-1=0
=>\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{-1}{6}\end{matrix}\right.\)
vậy PT có 2 nghiệm là x1=1 ;x2=\(\dfrac{-1}{6}\)
b,5x3-x2-5x+1=0
<=>x2(5x-1)-(5x-1)=0
<=>(x2-1)(5x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy PT có 2 nghiệm x1=-1; x2=1; x3=\(\dfrac{1}{5}\)