Rút gọn vế trái ta được 2^33-1
=> n = 33
Đặt \(A=1+2+2^2+2^3+......+2^{31}+2^{32}\)
Ta có:
\(A=1+2+2^2+2^3+......+2^{31}+2^{32}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{32}+2^{33}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{32}+2^{33}\right)-\left(1+2+2^2+2^3+......+2^{31}+2^{32}\right)\)
\(\Leftrightarrow A=2^{33}-1\)
Mặt khác \(A=2^n-1\)
\(\Rightarrow2^{33}-1=2^n-1\)
\(\Rightarrow2^{33}-1-2^n+1=0\)
\(\Rightarrow2^{33}-2^n=0\)
\(\Rightarrow2^{33}=2^n\)
\(\Rightarrow n=33\)
Vậy n=33