\(=2\left[\left(x+y\right)^2-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
=2-6xy-3+6xy=-1
\(=2\left[\left(x+y\right)^2-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
=2-6xy-3+6xy=-1
Cho x,y là các số dương thỏa mãn x + y \(\le\)3. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2}{3xy}+\sqrt[]{\dfrac{3}{y+1}}\)
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)
\(P=\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\):\(\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)
a) Với giá trị nào cùa x thì biểu thức có nghĩa
b) Rút gọn P
c) Tím P với x=3 và y=\(\dfrac{2}{2-\sqrt{3}}\)
Giúp với ạ
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Cho x > 0; y > 0 và x+y<=4/3 . Tìm giá trị nhỏ nhất của biểu thức M=x+y+1/x+1/y
Cho:
X = {-4; -2; -1; 0; \(\dfrac{1}{2}\); 3}
Y = {-12; -3; 0; -\(\dfrac{3}{2}\); -9; 6; 3; 12}
f là hàm số từ X đến Y được xác định bởi công thức y = f(x) = -3x. Hãy lập bảng giá trị tương ứng giữa x và y.
Cho x,y > 0 và x+y=1. Tính giá trị nhỏ nhất của biểu thức \(A=x^2+y^2+xy\)
a) Tính giá trị biểu thức A=\(5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}=\sqrt{80}\)
b) Hàm số y=(\(\sqrt{2}-1\)) x-3 đồng biến hay nghịch biến. Vì sao?
c) Trong mặt phảng tọa độ Oxy cho đường thẳng y=(\(m^2+2\)) x+m và đường thẳng y=6x+2. Tìm m để 2 đường thẳng đó song song với nhau
Cho biểu thức \(P=\dfrac{xy-\sqrt{x^2-1}\sqrt{y^2-1}}{xy+\sqrt{x^2-1}\sqrt{y^2-1}}\) Tính giá trị biểu thức với \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right);y=\dfrac{1}{2}\left(b+\dfrac{1}{b}\right);a,b\ge1\)