Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
leanh

gấppppppppppppppppppp ạ Cho hình thang ABCD (AB// CD) , M là trung điểm của CD. Gọi E là giao điểm của AC và BM, F là giao điểm của BD và AM . Đường thẳng EF cắt BC và AD lần lượt tại G và H . a) Chứng minh rằng EA/EC = 2AB/ CD b) Chứng minh rằng EF//CD c) Chứng minh rằng GE=EF=FH

Phongg
9 giờ trước (19:41)

a) Xét tam giác EMC có AB//MC
\(\Rightarrow\frac{EA}{EC}=\frac{AB}{MC}\) (hệ quả Thales)(1)
mà M là trung điểm CD => MC=CD/2
\(\Rightarrow\frac{EA}{EC}=\frac{AB}{\frac{DC}{2}}=\frac{2AB}{DC}\)
b) Xét tam giác EMC có AB//MC
\(\Rightarrow\frac{AF}{FM}=\frac{AB}{DM}\) (hệ quả Thales)(2)
Vì M là trung điểm BC nên MC=DM (3)
Từ (1), (2) và (3), suy ra \(\frac{AF}{FM}=\frac{EA}{EC}\)
=> EF//MC hay EF//DC (Thales đảo)
c) Xét tam giác BDM có EF//DM
\(\Rightarrow\frac{FE}{DM}=\frac{BE}{BM}\) (hệ quả Thales) (4)
Xét tam giác BMC có EG//MC
\(\Rightarrow\frac{EG}{MC}=\frac{BE}{BM}\) (hệ quả Thales) (5)
Từ (4) và (5), suy ra \(\frac{EF}{DM}=\frac{EG}{MC}\)
mà DM=MC (cmt)
\(\Rightarrow EF=EG\)
Tương tự, có FH=EF
=> GE=EF=FH

Phongg
9 giờ trước (19:41)

a) Xét tam giác EMC có AB//MC
\(\Rightarrow\frac{EA}{EC}=\frac{AB}{MC}\) (hệ quả Thales)(1)
mà M là trung điểm CD => MC=CD/2
\(\Rightarrow\frac{EA}{EC}=\frac{AB}{\frac{DC}{2}}=\frac{2AB}{DC}\)
b) Xét tam giác EMC có AB//MC
\(\Rightarrow\frac{AF}{FM}=\frac{AB}{DM}\) (hệ quả Thales)(2)
Vì M là trung điểm BC nên MC=DM (3)
Từ (1), (2) và (3), suy ra \(\frac{AF}{FM}=\frac{EA}{EC}\)
=> EF//MC hay EF//DC (Thales đảo)
c) Xét tam giác BDM có EF//DM
\(\Rightarrow\frac{FE}{DM}=\frac{BE}{BM}\) (hệ quả Thales) (4)
Xét tam giác BMC có EG//MC
\(\Rightarrow\frac{EG}{MC}=\frac{BE}{BM}\) (hệ quả Thales) (5)
Từ (4) và (5), suy ra \(\frac{EF}{DM}=\frac{EG}{MC}\)
mà DM=MC (cmt)
\(\Rightarrow EF=EG\)
Tương tự, có FH=EF
=> GE=EF=FH


Các câu hỏi tương tự
THPHUONG
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Đặng Thụy Thiên
Xem chi tiết
Nhật Hạ
Xem chi tiết
Nhật Hạ
Xem chi tiết
Tiến Lê
Xem chi tiết
lê thị thủy an
Xem chi tiết
Đỗ Thùy Dương
Xem chi tiết
đặng anh thơ
Xem chi tiết
Minh Đức Nguyễn
Xem chi tiết