\(\frac{ax+b}{x^2-4}-\frac{1}{x-2}=\frac{2}{x+2}\\ \Leftrightarrow\frac{ax+b}{\left(x+2\right)\left(x-2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{2x-4}{\left(x+2\right)\left(x-2\right)}\\ \Rightarrow ax+b-x-2=2x-4\\ \Leftrightarrow\left(a-1\right)x+b-2=2x-4\)
\(\Leftrightarrow\left[\begin{matrix}a-1=2\\b-2=-4\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
thay a=3;b= - 2 vào điểu thức a+b, ta được:
3 - 2=1
vậy a+b=1