\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\)
Tính A+B+C
\(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y-2}=-1\\\frac{4}{x}+\frac{3}{y-2}=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{matrix}\right.\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(\left\{{}\begin{matrix}\frac{2}{\sqrt{x}+1}-\frac{1-x-y}{x+y}=\frac{22}{15}\\\frac{3}{\sqrt{x}+1}+\frac{5+x+y}{x+y}=3\\\\\end{matrix}\right.\)
Cho x,y,z > 0 , x + y + z <= \(\frac{3}{2}\). C/m : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}>=\frac{3}{2}\sqrt{17}\)
Cho biểu thức: \(P=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
Rút gọn P. Cho \(x.y=16\). Xác định x, y để P có giá trị nhỏ nhất
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{x+z}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\)
Cho x,y tm x,y\(\in R\) và \(0\le x,y \le\frac{1}{2}\)
CMR:\(\frac{\sqrt{x}}{1+y}+ \frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)