Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
a)\(\frac{z}{5}=\frac{x}{2}=\frac{y}{3}v\text{à}x.y-z=810\)
b)\(5x=3yv\text{à}2x^2-y^2=-28\)
c)\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}v\text{à}x^2+y^2+z^2=14\)
d)\(x:y:z=3:4:5v\text{à}5z^2-2y^2=594\)
Tìm x, y, z, biết: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}v\text{à}2x+3y-z=50\)
a.\(3\left(x-1\right)=3\left(y-2\right);4\left(y-2\right)=3\left(z-3\right)v\text{à}2x+3y-z=-250\)
b.\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
giải ra giúp mik nha!!!!!!!!!
Tìm x,y,z. Biết:
\(\frac{x}{5}=\frac{y}{6},\frac{y}{7}=\frac{z}{8}\)\(v\text{à}x+y+z=250\)
Tìm x,y,z biết:
a,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}v\text{à}xyz=810\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}v\text{à x- 2y+3z=14}\)
Tìm x , y , z : \(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(4x=3y;5y=3zv\text{à}2x-3y+z=6\)
c) \(\frac{x}{8}=\frac{y}{64}=\frac{z}{216}v\text{à}2x^2+2y^2-z=1\)
\(T\text{ìm}:x,y,z.Th\text{ỏa}m\text{ãn}:\frac{12x-15y}{7}=\frac{20z-20x}{9}=\frac{15y-20z}{11}v\text{à}x+y+z=48\)