Rút gọn biểu thức :
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\) đkxđ : \(x\ge0;x\ne4\)
b) \(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
c) \(C=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\div\frac{\sqrt{x}}{x+\sqrt{x}}\) đkxđ : x > 0
1. Tính:
a) \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)
b) \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)
2. Rút gọn: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
Tính:
F= \(\left(\frac{\sqrt{x}}{\sqrt{x}+2}-\frac{x+2}{x-4}\right):\left(\frac{2\sqrt{x}-1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
A=\(\left(\frac{\sqrt{x}-1}{x-4}-\frac{\sqrt{x+1}}{x+4\sqrt{x+4}}\right)\):\(\frac{x\sqrt{x}}{\left(4-x\right)^2}\)
B=\(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\right):\frac{x\sqrt{x}}{\left(4-x\right)^2}\)
rút gọn các biểu thức
P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a,Rút gọn A
\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\) rút gọn biểu thức
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\) rút gọn biểu thức
\(Q=\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}\right):\frac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\)
a) Rút gon
b) Tìm x để Q = 2
c) Tìm x để Q < 0
Rút gọn \(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{8\sqrt{x}+8}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}\right):\frac{x+2\sqrt{x}+5}{x+2\sqrt{x}}\)